• Title/Summary/Keyword: solder joint reliability

Search Result 172, Processing Time 0.019 seconds

Solder Joints Fatigue Life of BGA Package with OSP and ENIG Surface Finish (OSP와 ENIG 표면처리에 따른 BGA 패키지의 무연솔더 접합부 피로수명)

  • Oh, Chulmin;Park, Nochang;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • Many researches related to the reliability of Pb-free solder joints with PCB (printed circuit board) surface finish under thermal or vibration stresses are in progress, because the electronics is operating in hash environment. Therefore, it is necessary to assess Pb-free solder joints life with PCB surface finish under thermal and mechanical stresses. We have investigated 4-points bending fatigue lifetime of Pb-free solder joints with OSP (organic solderability preservative) and ENIG (electroless nickel and immersion gold) surface finish. To predict the bending fatigue life of Sn-3.0Ag-0.5Cu solder joints, we use the test coupons mounted 192 BGA (ball grid array) package to be added the thermal stress by conducting thermal shock test, 500, 1,000, 1,500 and 2,000 cycles, respectively. An 4-point bending test is performed in force controlling mode. It is considered that as a failure when the resistance of daisy-chain circuit of test coupons reaches more than $1,000{\Omega}$. Finally, we obtained the solder joints fatigue life with OSP and ENIG surface finish using by Weibull probability distribution.

A Study of Joint Reliability According to Various Cu Contents between Electrolytic Ni and Electroless Ni Pad Finish (전해Ni, 무전해 Ni pad에서의 Cu 함량에 따른 접합 신뢰성에 관한 연구)

  • Lee, Hyun Kyu;Chun, Myung Ho;Chu, Yong Chul;Oh, Kum-Sool
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.51-56
    • /
    • 2015
  • It has been used various pad finish materials to enhance the reliability of solder joint and recently Electroless Ni Electroless Pd Immersion Gold (the following : ENEPIG) pad has been used more than others. This study is about reliability according to being used in commercial Electrolytic Ni pad and ENEPIG pad, and was observed behavior of various Cu contents. After reflow, the inter-metallic compound (IMC) between solder and pad is composed of $Cu_6Sn_5$ (Ni substituted) by using EDS, and in case of ENEPIG, between IMC and Ni layer was observed the dark layer ($Ni_3P$ layer). Additional, it could be controlled the thickness of dark layer according to Cu contents. Investigated the different fracture mode between electrolytic Ni and ENEPIG pad after drop shock test, in case of soft Ni, accelerated stress propagated along the interface between $1^{st}$ IMC and $2^{nd}$ IMC, and in case of ENEPIG pad, accelerated stress propagated along the weaken surface such as dark layer. The unstable interface exists through IMC, pad material and solder bulk by the lattice mismatch, so that the thermal and physical stress due to the continuous exterior impact is transferred to the IMC interface. Therefore, it is strongly requested to control solder morphology, IMC shape and thickness to improve the solder reliability.

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

High reliability nano-reinforced solder for electronic packaging (전자 패키징용 고신뢰성 나노입자 강화솔더)

  • Jung, Do-hyun;Baek, Bum-gyu;Yim, Song-hee;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • In the soldering industry, a variety of lead-free solders have been developed as a part of restricting lead in electronic packaging. Sn-Ag-Cu (SAC) lead-free solder is regarded as one of the most superior candidates, owing to its low melting point and high solderability as well as the mechanical property. On the other hand, the mechanical property of SAC solder is directly influenced by intermetallic compounds (IMCs) in the solder joint. Although IMCs in SAC solder play an important role in bonding solder joints and impart strength to the surrounding solder matrix, a large amount of IMCs may cause poor strength, due to their brittle nature. In other words, the mechanical properties of SAC solder are of some concern because of the formation of large and brittle IMCs. As the IMCs grow, they may cause poor device performance, resulting in the failure of the electronic device. Therefore, new solder technologies which can control the IMC growth are necessary to address these issues satisfactorily. There are an advanced nanotechnology for microstructural refinement that lead to improve mechanical properties of solder alloys with nanoparticle additions, which are defined as nano-reinforced solders. These nano-reinforced solders increase the mechanical strength of the solder due to the dispersion hardening as well as solderability of the solder. This paper introduces the nano-reinforced solders, including its principles, types, and various properties.

Effects of Graphene Oxide Addition on the Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Graphene Oxide 첨가에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 Electromigration 특성 분석)

  • Son, Kirak;Kim, Gahui;Ko, Yong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2019
  • In this study, the effects of graphene oxide (GO) addition on electromigration (EM) lifetime of Sn-3.0Ag-0.5Cu Pb-free solder joint between a ball grid array (BGA) package and printed circuit board (PCB) were investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of package side finished with electroplated Ni/Au, while $Cu_6Sn_5$ IMC was formed at the interface of OSP-treated PCB side. Mean time to failure of solder joint without GO solder joint under $130^{\circ}C$ with a current density of $1.0{\times}10^3A/cm^2$ was 189.9 hrs and that with GO was 367.1 hrs. EM open failure was occurred at the interface of PCB side with smaller pad diameter than that of package side due to Cu consumption by electrons flow. Meanwhile, we observed that the added GO was distributed at the interface between $Cu_6Sn_5$ IMC and solder. Therefore, we assumed that EM reliability of solder joint with GO was superior to that of without GO by suppressing the Cu diffusion at current crowding regions.

A Study of Properties of Sn-3Ag-0.5Cu Solder Based on Phosphorous Content of Electroless Ni-P Layer (Sn-3Ag-0.5Cu Solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구)

  • Shin, An-Seob;Ok, Dae-Yool;Jeong, Gi-Ho;Kim, Min-Ju;Park, Chang-Sik;Kong, Jin-Ho;Heo, Cheol-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.481-486
    • /
    • 2010
  • ENIG (electroless Ni immersion gold) is one of surface finishing which has been most widely used in fine pitch SMT (surface mount technology) and BGA (ball grid array) packaging process. The reliability for package bondability is mainly affected by interfacial reaction between solder and surface finishing. Since the behavior of IMC (intermetallic compound), or the interfacial reaction between Ni and solder, affects to some product reliabilities such as solderability and bondability, understanding behavior of IMC should be important issue. Thus, we studied the properties of ENIG with P contents (9 wt% and 13 wt%), where the P contents is one of main factors in formation of IMC layer. The effect of P content was discussed using the results obtained from FE-SEM(field-emission scanning electron microscope), EPMA(electron probe micro analyzer), EDS(energy dispersive spectroscopy) and Dual-FIB(focused ion beam). Especially, we observed needle type irregular IMC layer with decreasing Ni contents under high P contents (13 wt%). Also, we found how IMC layer affects to bondability with forming continuous Kirkendall voids and thick P-rich layer.

A quantitative test method for assessing solder joint reliability of FCBGA packages (FCBGA의 솔더조인트 신뢰성 보증을 위한 정량적인 시험법)

  • Go, Byeong-Gak;Park, Bu-Hui;Kim, Gang-Dong;Jang, Jung-Sun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.933-937
    • /
    • 2005
  • FCBGA가 마더보드에 실장된 후 솔더 조인트에 균열이 생기면 단선이 발생한다. 솔더 조인트의 신뢰성을 평가하기 위한 방법 중 전단강도시험(shear test)은 약한 솔더 조인트를 판별하기 어려워 양품 로트와 불량 로트를 구별할 수 없으며, 인장강도시험(pull test)은 솔더 볼의 위치별 산포가 크고, peel test는 품질을 정량적으로 나타낼 수 없는 등의 문제가 있다. 새로운 시험 방법은 Area Pull Test(이하 APT)라 명명했으며 peel test와 pull test를 합한 개념으로서, 시험 샘플을 만드는 과정은 peel test와 동일하다. 솔더 조인트의 인장강도 측정은 지그를 만들어서 FCBGA 전체를 당겨서 측정하였다. 샘플은 Ni도금 두께를 3, 5, 8 ${\mu}m$로 제작하여 불량(3${\mu}m$), 양품으로 구분하였고, 양품 또한 품질 수준을 두가지(5,8${\mu}m$)로 나누었다. 그 결과 peel test 기준에 의거한 불량, 양품을 정량적인 수치(인장강도)로 판별할 수 있었으며, 솔더 조인트의 파괴모드별 인장강도를 구분 할 수 있었다.

  • PDF

Wafer-Level CSP(Omega CSP)

  • Park, I.S.;Kang, I.S.;Kim, J.H.;Kim, J.Y.;Cho, S.J.;Park, M.G.;Chun, H.S.;Kih, J.S.;Hun, H.;Yu, J
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.10a
    • /
    • pp.195-201
    • /
    • 2000
  • Current Status: Good Electrical performance for high speed device, Solder joint reliability-Passed 1600 cycles for 4M SRAM(3.27mm DNP),-Passed 400 cycles for large die(5.71 mm DNP), Future Plan: Improving Board Level Reliability for large die size, Lead free solder evaluation.

  • PDF

The Effect of Finite Element Models in Thermal Analysis of Electronic Packages (반도체 패키지의 열변형 해석 시 유한요소 모델의 영향)

  • Choi, Nam-Jin;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.380-387
    • /
    • 2009
  • The reliability concerns of solder interconnections in flip chip PBGA packages are produced mainly by the mismatch of coefficient of thermal expansion(CTE) between the module and PCB. Finite element analysis has been employed extensively to simulate thermal loading for solder joint reliability and deformation of packages in electronic packages. The objective of this paper is to study the thermo-mechanical behavior of FC-PBGA package assemblies subjected to temperature change, with an emphasis on the effect of the finite element model, material models and temperature conditions. Numerical results are compared with the experimental results by using $moir{\acute{e}}$ interferometry. Result shows that the bending displacements of the chip calculated by the finite element analysis with viscoplastic material model is in good agreement with those by $moir{\acute{e}}$ inteferometry.