• Title/Summary/Keyword: solar tracking sensor

Search Result 68, Processing Time 0.028 seconds

The Manufacture and Output Characteristics of Small PV System Using Solar Tracking System (소용량 태양 추적장치를 이용한 PV 시스템제작 및 출력특성)

  • Lim, Hong-Woo;Park, Je-Woong;Choi, Mun-Han;Kim, Pyoung-Ho;Jang, Yong-Hae;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1328-1331
    • /
    • 2002
  • Nowaday, almost of practical energy is come from the fossil fuel, such as coal, oil and gas those are limited and caused the environmental pollution. For these reason. solar energy is come into notice as a new alternative energy source to overcome the shortage of electricity in the $future^{(1)}$. In this paper, small PV system using photo sensor for tracking sun is developed and is verified by experiments.

  • PDF

Fuzzy Controller Design of PC Based for Solar Tracking System (태양 추적시스템을 위한 PC 기반의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.86-94
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in of order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studies. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

Development of Heating Device Using Concentrator Solar Cells (집광형 태양전지를 이용한 난방장치 개발)

  • Lee, Dong Il;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • In this study, the generation efficiency of the limited area of a concentrator solar cell was increased by using a solar concentrator and a tracking device. Heat generated by the solar cell was collected using a thermal absorber for supplying hot water or heating. Thus, the concentrator solar cell system provided electricity and heat simultaneously. Tracking of the sun by detecting the sun's position, repositioning of heating device towards the east after sunset, and shutting down of system after sunset were successfully implemented using an illuminance sensor (CdS) and Simulink, a commercial software package. We performed parametric analysis of the velocity, fin installation, and entrance location with respect to the operating temperature of the concentrator solar cell. A heat transfer simulation model was developed for comparing the actual temperature profiles of the concentrator solar cell and thermal absorber, and good agreement was found between the results of the simulations and the experiments.

Synergy of monitoring and security

  • Casciati, Sara;Chen, Zhi Cong;Faravelli, Lucia;Vece, Michele
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.743-751
    • /
    • 2016
  • An ongoing research project is devoted to the design and implementation of a satellite based asset tracking for supporting emergency management in crisis operations. Due to the emergency environment, one has to rely on a low power consumption wireless communication. Therefore, the communication hardware and software must be designed to match requirements, which can only be foreseen at the level of more or less likely scenarios. The latter aspect suggests a deep use of a simulator (instead of a real network of sensors) to cover extreme situations. The former power consumption remark suggests the use of a minimal computer (Raspberry Pi) as data collector.

A Study on Characteristic of Power Conversion System of the Photovoltaic Using a Solar Position Tracker (위치 추적기를 사용한 태양광 발전의 전력 변환시스템 특성에 관한 연구)

  • Hwang, L.H.;Jang, J.H.;Na, S.K.;Kim, Y.S.;Ahn, I.S.;Cho, M.T.;Song, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1034-1036
    • /
    • 2006
  • In this paper, I used microprocessor and sensor and designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and, composed an power conversion system with boost converter and voltage source inverter. Used the constant voltage control method for maximum power point tracking in boost converter control and, used the SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control.

  • PDF

New MPPT Control Strategy for Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Bae, Hyun-Su;Park, Joung-Hu;Cho, Bo-Hyung;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.174-180
    • /
    • 2007
  • In this paper, a simple control method for two-stage utility grid-connected photovoltaic power conditioning systems (PCS) is proposed. This approach enables maximum power point (MPP) tracking control with post-stage inverter current information instead of calculating solar array power, which significantly simplifies the controller and the sensor. Furthermore, there is no feedback loop in the pre-stage converter to control the solar array voltage or current because the MPP tracker drives the converter switch duty cycle. This simple PCS control strategy can reduce the cost and size, and can be utilized with a low cost digital processor. For verification of the proposed control strategy, a 2.5kW two-stage photovoltaic grid-connected PCS hardware which consists of a boost converter cascaded with a single-phase inverter was built and tested.

Solar Tracking System by One-sensor Type (One-sensor방식에 의한 태양 추적시스템)

  • Min, B.G.;Kim, B.H.;Kim, Y.J.;Choi, Y.O.;Cho, G.B.;Baek, H.L.;Kim, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.180-181
    • /
    • 2008
  • 태양광발전 추적시스템은 태양이 항상 법선을 이루면서 태양전지 모듈에 입사되게 하는 방법으로 태양광발전시스템의 발전 효율을 향상하기 위해서는 정확하게 태양을 추적하기 위한 시스템이 필요하다. 본 논문에서는 One-sensor방식을 채택하여 기능성을 그대로 유지하고, Sensor의 수를 감소시켜 비용을 절감하였다.

  • PDF

Design of Solar Tracking CanSat (태양위치추적 캔위성의 개발)

  • Jung, In-Jee;Moon, Ji-Hwan;Kim, Min-Soo;Lim, Byoung-Duk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.327-334
    • /
    • 2013
  • In August 2012 the first CanSat competition was hosted by the Satellite Research Center of KAIST under auspice of the Ministry of Education, Science and Technology. The present authors team won the first prize in the university session. In this paper the overall procedure of the CanSat project presented from the conceptual design stage to the final launch test. As the compulsory mission CanSat should send GPS data and attitude information to the ground station which in practice was performed via Bluetooth channel. In addition our CanSat is designed to trace the sun for the solar panels supplying electric power of satellite. IMU and servo motors are used for the attitude control in order that the solar sensor of the CanSat is always direct towards the sun. Launching of CanSat was simulated by dropping from a balloon at the height of around 150m via parachute. Launching test results showed that the attitude control of the CanSat and its solar sensing function were successful.

The Concentrating Photovoltaic System using a Solar Tracker (태양위치 추적 장치를 이용한 집광형 태양광 발전시스템)

  • Yoo, Yeong-tae;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.377-385
    • /
    • 2017
  • The solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change. Also, The solar cells should be operated at the maximum power point. In this paper, I used microprocessor and sensor and designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and composed an power conversion system with boost converter and voltage source inverter. Used the constant voltage control method for maximum power point tracking in boost converter control and, used the SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control. The result was less then 5% when compared the catalogue of solar cell module and the simulation through a mathematics modelling. The boost rate of boost converter was similar to 167 % with the simulation.

A study on Photovoltaic System to Considers a Solar Position Tracker for Air Conditioner a Clinic room (병실 냉.난방장치용 태양 위치 추적기를 이용한 태양광 발전시스템에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1355-1362
    • /
    • 2007
  • In this paper, these setting can be useful in the microprocessor and sensor that designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, this is compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and that is composed an power conversion system with boost converter and voltage source inverter. This device can be used to the constant voltage control method for maximum power point tracking in boost converter control. Experiment Results is shown that using a SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control.

  • PDF