• Title/Summary/Keyword: solar tracking

Search Result 449, Processing Time 0.021 seconds

A Real-Time Simulation Method for Stand-Alone PV Generation Systems using RTDS (RTDS를 이용한 단독운전 태양광 발전시스템의 실시간 시뮬레이션)

  • Kim, Bong-Tae;Lee, Jae-Deuk;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.190-193
    • /
    • 2001
  • In order to verify the efficiency or availability and stability of photovoltaic(PV) generation systems, huge system apparatuses are needed, in general, in which an actual size of solar panel, a type of converter system and some amount of load facilities should be installed in a particular location. It is also hardly possible to compare a Maximum Power Point Tracking (MPPT) control scheme with others under the same weather and load conditions in an actual PV generation system. The only and a possible way to bring above-mentioned problem to be solved is to realize a transient simulation scheme for PV generation systems using real weather conditions such as insolation and surface temperature of solar cell. The authors, in this paper, introduces a novel simulation method, which is based on a real-time digital simulator (RTDS), for PV generation systems under the real weather conditions. Firstly, VI characteristic equation of a solar cell is developed as an empirical formula and reconstructed in the RTDS system, then the real data of weather conditions are interfaced to the analogue inputs of the RTDS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results shows that the cost effective verifying for the efficiency or availability and stability of PV generation systems and the comparison research of various control schemes like MPPT under the same real weather conditions are possible.

  • PDF

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

Design of Sliding Mode Observer for Solar Array Current Estimation in the Grid-Connected Photovoltaic System (계통연계형 태양광 발전시스템의 태양전지 전류 추정을 위한 슬라이딩 모드 관측기 설계)

  • Kim IL-Song;Baik In-Cheol;Youn Myung-Joong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.411-419
    • /
    • 2005
  • In this paper, a sliding mode observer for solar array current estimation in the photovoltaic power generation system is presented. The solar array current estimation Information is obtained from the sliding mode observer and fed into the maximum power point tracker to update the reference voltage. The parameter values such as inverter dc link capacitances cm be changed up to 50$\%$ from their nominal values and the linear observer can't estimate the correct state values under the parameter variations and noisy environments. The configuration of sliding mode observer is simple, but it shows the robust tracking performance against parameter variations and modeling uncertainties. In this paper, the method for constructing the sliding mode observer using equivalent control input is presented and the convergence of the proposed observer is verified by the Lyapunov method. The mathematical modeling and the experimental results verify the validity of the proposed method.

Solar concentrator optimization against wind effect

  • Sayyed Hossein Mostafavi;Amir Torabi;Behzad Ghasemi
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2024
  • A solar concentrator is a reflective surface in the shape of a parabola that collects solar rays in a focal area. This concentrator follows the path of the sun during the day with the help of a tracking system. One of the most important issues in the design and construction of these reflectors is the force exerted by the wind. This force can sometimes disrupt the stability of the concentrator and overturn the entire system. One of the ways to estimate the force is to use the numerical solution of the air flow in three dimensions around the dish. Ansys Fluent simulation software has been used for modeling several angles of attack between 0 and 180 with respect to the horizon. From the comparison of the velocity vector lines on the dish at angles of 90 to - 90 degrees, it was found that the flow lines are more concentrated inside the dish and there is a tendency for the flow to escape around in the radial direction, which indicates the presence of more pressure distribution inside the dish. It was observed that the pressure on the concave surface was higher than the convex one. Then, the effect of adding a hole with various diameter of 200, 300, 400, 500, and 600 mm on the dish was investigated. By increasing the diameter up to the optimized size of 400 mm, a decrease in the maximum pressure value in the pressure distribution was shown inside the dish. This pressure drop decreased the drag coefficient. The effect of the hole on the dish was also investigated for the 30-degree angled dish, and it was found that the results of the 90-degree case should be considered as the basis of the design.

An Experimental Study on the Optical Separation of Highly Concentrated Sunlight (Hot mirror를 이용한 고밀도 태양광의 광분리에 관한 기초실험 연구)

  • Kim, Yeongmin;Mo, Yonghyun;Shin, Sangwoong;Oh, Seungjin;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.56-60
    • /
    • 2014
  • Highly concentrated sunlight obtained from a solar concentrator mounted on a solar tracker can be divided into the infrared and visible region before it is actually applied. That is, solar rays are directed toward a unit optically separating sunlight into the infrared and visible region by a hot mirror as they impinge on the surface of a secondary reflector. The Infrared rays can be utilized for thermoacoustic applications while visible rays can be utilized for indoor lighting. This work introduces the separation of two different kinds of light; sunlight and artificial light. As for the artificial light, its wavelength extended from 400m to 720m for the visible region and 620m to 940m for the infrared region. Comparatively, a series of tests performed on sunlight revealed its separation in the visible region from 460m to 680m whereas from 620m to 940m for the artificial light.

The Development and Application of a Training Base for the Installation and Adjustment of Photovoltaic Power Generation Systems

  • Chuanqing, SUN
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • In recent years, the development and application of green energy resources have attracted more and more /$^*$ 'tention of people. The training room presented here is focused on the terminal applications of a photovoltaic power generation system (PPGS). Through introducing the composition and the general design principles, we aimed at leading the students to master the fundamental skills required for its design, installation and construction. The training room consists of numerous platforms, such as: PPGS, Wind and Photovoltaic Hybrid Power Generation Systems, Wind Power Generation Equipments, Simulative Grid-Connected Power Generation System, Electronic Technology Application of New Energy, etc. This enables the students to obtain their project and professional skills training via assembling, adjusting, maintaining and inspecting, etc., various component parts of the photovoltaic and new energy power generation systems, to further grasp the fundamental and related theoretical knowledge, and to further reinforce their practical and operational skills, so as to improve their problem-analyzing and problem-solving abilities.

3-Point MPPT Algorithm under Dynamic Irradiation for Photovoltaic PCS (일사량 급변 시 유용한 3-Point 태양광 인버터 MPPT 알고리즘)

  • Kim, Dong-Gyun;Park, Kwan-nam;Cho, Sang-Yoon;Lee, Young-Kwoun;Yu, Gwon-Jong;Song, Seung-Ho;Choy, Ick;Choi, Ju-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.469-470
    • /
    • 2016
  • Since efficiency of maximum power point tracking (MPPT) is important for photovoltaic systems, a number of MPPT algorithms have already been researched for other environment, however, the most of MPPT algorithms can't track maximum point in dynamic irradiation. In this paper, P&O and 3-Point MPPT which is more specialized in dynamic irradiation are compared in basis of European Efficiency Test(EN50530). The efficiency of 3-Point MPPT algorithm is proved by simulation and experiment. In result, 3-Point MPPT shows higher efficiency in dynamic irradiation and less affected by environment than P&O.

  • PDF

A BIFUNCTIONAL UTILITY CONNECTED PHOTOVOLTAIC SYSTEM WITH POWER FACTOR CORRECTION AND U.P.S. FACILITY

  • Kim. S.;Yoo, Gwonjong;Song, Jinsoo
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.103-108
    • /
    • 1996
  • In this paper, a novel utility connected photovoltaic power generation system with unity power factor and uninterruptable power system facility and its control strategy are proposed. The proposed photovoltaic(PV) system is connected in parallel between utility and load. The PV system provides an uninterruptable voltage to load, a maximum power tracking to solar array, and power factor correction to the utility. The proposed system has the following advantages compared with the conventional utility connected PV system. 1. Harmonic elimination Function 2. Feeding the photovoltaic energy to the utility 3. Providing the uninterruptible power source along battery to the load In case that the photovoltaic array system is on the poor power generation, the battery and capacitor of the PV system are charged by three phase utility source and the inverter in the PV system only provides the reactive current to eliminate the harmonic current exited on the utility. In the normal operation mode, the PV system supplies active power to load and reactive power to utility in order to maintain the unity power factor and to regulate ac load voltage.

  • PDF

A Study on the Development of Charging Controller in Stand-Alone PV Power Generation System (독립형 태양광 발전 시스템 충전제어기 개발에 관한 연구)

  • 곽준호;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.916-921
    • /
    • 2004
  • This paper describes microprocessor-based control of photovoltaic power conditioning system. where the microprocessor is responsible for control of output power in accordance with the generated array DC power. The microprocessor includes the control algorithm of maximum power point tracking and converter control algorithm. In this power, we have designed a MPPT(Maximum Power Point Tracker) algorithm with environment factors and a PWM(Pulse Width Modulation) algorithm for high efficiency. The controller has been tested in the laboratory with the power conditioner and shows excellent performance.

Tracking Control of Maximum Power Point of Photovoltaic Array by using the Microprocessor (Microprocessor를 이용한 태양전지의 최대 출력점 추적 제어)

  • Han, K.H.;Jang, K.H.;Kwon, H.;Kim, D.K.;Lee, W.K.;Kang, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.492-495
    • /
    • 1991
  • This paper proposes the microprocessor-based step-up chopper system used for the battery charge from the photovoltaic arrays. The proposed scheme tracks the maximum power point by analyzing the voltage and power phasors which vary as the solar irradiation quantity. In this system, protection for the overcharge and overdischarge in also provided.

  • PDF