• Title/Summary/Keyword: solar tracking

Search Result 449, Processing Time 0.023 seconds

Design and implementation of 3 kW Photovoltaic Power Conditioning System using a Current based Maximum Power Point Tracking (전류형 MPPT를 이용한 3 kW 태양광 인버터 시스템 제어기 설계 및 구현)

  • Cha, Han-Ju;Lee, Sang-Hoey;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1796-1801
    • /
    • 2008
  • In this paper, a new current based maximum power point tracking (CMPPT) method is proposed for a single phase photovoltaic power conditioning system and the current based MPPT modifies incremental conductance method. The current based MPPT method makes the entire control structure of the power conditioning system simple and uses an inherent current source characteristic of solar cell array. In addition, digital phase locked loop using an all pass filter is introduced to detect phase of grid voltage as well as peak voltage. Controllers about dc/dc boost converter, dc-link voltage, dc/ac inverter is designed for a coordinated operation. Furthermore, PI current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. 3kW prototype photovoltaic power conditioning system is built and its experimental results are given to verify the effectiveness of the proposed control schemes.

Implemented of Photovoltaic Inverter System by a Maximum Power Point Tracking (태양광 발전 시스템의 최대전력점 추적에 관한 연구)

  • Hong, Jeng-Pyo;Lee, Oh-Keol;Lee, Yong-Kil;Song, Dall-Seop;Kwon, Soon-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.74-76
    • /
    • 2007
  • In this paper a maximum power point tracking(MPPT) techniques for power of PV(photovoltaic) systems are presented using boost converter for a connected single phase inverter. On the basic principle of power generation for the PV module, algorithms for maximum power point tracking are described by utilizing a boost converter to adjust the output voltage of the PV module. Based on output power of a boost converter, single phase inverter uses predicted current control to control four IGBT's switch in full bridge. Furthermore a low cost control system for solar energy conversion using the DSP is developed, based on boost converter to adjust the output voltage of the PV module. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation. Finally, experimental results confirm the superior performance of the proposed method.

  • PDF

PSCAD/EMTDC Based Modeling and Simulation Analysis of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 미용한 계통연계형 태양광발전시스템의 모델링 및 모의 해석)

  • Jeon Jin-Hong;Kim Eung-Sang;Kim Seul-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.107-116
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMTDC, an industry standard simulation tool for studying the transient behavior of electric power system and apparatus, is used to conduct all aspects of model implementation and to carry out extensive simulation study. This paper is aimed at sharing with the PSCAD/EMTDC user community our user-defined model for PV system applications, which is not yet available as a standard model within PSCAD/EMTDC. An equivalent circuit model of a solar cell has been used for modeling solar array. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed.

Improvement of generation capacity per unit site area by the optimization of photovoltaic array (태양광어레이 최적화에 의한 단위 부지면적당 발전량 개선)

  • Kim, Eui Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.109.2-109.2
    • /
    • 2011
  • A photovoltaic system is getting the spotlight for a environment-friendly energy source. But its location is limited because a lot of land is necessary for photovoltaic arrays. Nevertheless, its dissemination is rapidly increasing more than 40 % every year and exceeded about 400 MW in 2009. The radical growth of a photovoltaic system aggravated a lack of sites, so that forests and farmland were destroyed. It is demanded to make use of a vacant lot or little piece of land for the way to solve the lack of sites and improve the location requirements for a photovoltaic system. General photovoltaic arrays are consist of a single layer structure and needs enough separation distances to maximize the amount of solar radiation and to eliminate influences by the shadow of other arrays. So that a large amount of land is required for the site. The solar cell arrays with long separation distances can not be placed in a small vacant lot and its site application efficiency is low. This study optimized photovoltaic arrays as multilayered structure with movable sleeves for the efficient photovoltaic in a small site. The existing photovoltaic arrays with a single layer structure were fixed or tracking systems. In this experimental equipment, photovoltaic arrays attached to the multilayers have rectilinear movement and rotary motion using sleeves. Therefore, shadow influences were removed and the generation capacity was improved. On the simulation result, generation increased by about 30% in the same site considering shadow influences and so on.

  • PDF

Design of Buck Converter Controller in a Photovoltaic Power Conditioning System (태양광 발전 시스템에서의 벅 컨버터 제어기 설계)

  • Park, Bong-Hee;Jeong, Seung-Whan;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Generally, buck converter controller is designed to control the output voltage of the converter. However, design of the controller in a photovoltaic power conditioning system is different from theoretical design guideline. The controller in a photovoltaic power conditioning system controls the input voltage of the converter (the output voltage of the solar cell) to meet a maximum power point tracking (MPPT) performance. In this study, a new model for buck converter used in a photovoltaic power conditioning system is proposed, which is linearized after state-space averaging in each period. Also, mathematical expression of the modeled buck converter is interpreted separately as small and large signals; therefore its appropriateness is measured to design linear voltage and current controller.

Current Status of KASI Solar Radio Observing System

  • Bong, Su-Chan;HwangBo, Jung-Eun;Park, Sung-Hong;Jang, Be-Ho;Lee, Chang-Hoon;Baek, Ji-Hye;Cho, Kyung-Suk;Park, Young-Deuk;Gary, Dale E.;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2011
  • Korea Astronomy and Space Science Institute (KASI) operates 2 solar radio observing facilities, e-CALLISTO (Earthwide network of Compound Astronomical Low-cost Low-frequency Instrument for Transportable Observatory) station and Korean Solar Radio Burst Locator (KSRBL). Although e-CALLISTO tracking system improvement.is underway, at least 6 new events were observed in this year. Software development for KSRBL is in progress. The antenna calibration software was updated and flux calibration software was developed. Also the automatic daily overview spectrum monitoring system is now operational. We found solutions to several problems including spurious data and FPGA board communication. However, a few minor unsolved hardware problems still persist. Meanwhile, at least 6 new events were observed by KSRBL in this year, and a comparative study with HXR is currently underway.

  • PDF

Development of Tracking Daylighting System Using Multi-Parabolic Reflector (다중 파라볼릭 반사경 방식을 이용한 추적식 집광시스템 개발)

  • Lee, Chung-Sik;Kim, Jong-Min;Park, Yeon-Min;Sung, Tae-Kyung;Joung, Che-Bong;Kang, Seung-Hoon;Kim, Byung-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.56-63
    • /
    • 2013
  • Daylighting system is an alternative lighting system using daylight collecting device, light transformer and light diffuser. In this paper, we developed a daylighting system in which the collecting device composed by dual parabolic reflectors, the silica optical fiber adapted to the light transformer and light diffuser made of the polyglass square sheet. We have estimated the system efficiency and general color rendering index(Ra) of the developed system. The system efficiency measured to 23.8% and Ra was revealed as 95. Ra number of the developed system is bigger than the number(65) of the previous fresnel lens based sunlight collector.

A Study on the Performance Analysis for the CPV Module Applying Sphericalness Lens (구형렌즈를 적용한 CPV 모듈 발전성능 분석에 관한 연구)

  • Jeong, Byeong-Ho;Kim, Nam-Oh;Lee, Kang-Yoen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.293-297
    • /
    • 2010
  • Next generation concentrating photovoltaic technologies could have a large-scale impact on world electricity production once they will become economically attractive and grid parity will be reached. Multi-junction solar cells will be characterised by a high value of the cell economical performance index if the cells were able to operate at high concentration level. Concentrating the sunlight by optical devices like lenses or mirrors reduces the area of expensive solar cells or modules, and, moreover, increases their efficiency. Accurate and reliable tracking is an important issue to maintain high the CPV system output power. Further, for high concentration CPV systems, the actual tracker cost is about 20% of the total CPV system cost. In this paper high-concentration is defined as systems using concentration ratios well above 100 times the one sun intensity and trackerlss CPV system studied. Using sphericalness lens and parallel MJ cell connection method were suggested and achieved experiment on a clear day in summer. Development of these high performance multi-junction CPV module promises to accelerate growth in photovoltaic power generation.

A High Quality Battery Charge-Discharge Controller for New & Renewal Energy Power Generation System (Focusing on Sun-tracking Solar Power Generation System) (신재생에너지 발전 시스템을 위한 고 품위 축전지 충방전 컨트롤러 (추적식 태양광 발전시스템을 중심으로))

  • Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.258-263
    • /
    • 2011
  • In this paper, a high quality battery charge-discharge controller for new & renewal energy power generation system is designed. The proposed new controller has a function to manipulate the battery charging current precisely and it is suitable for various batteries including Lead-Acid battery generally used for solar power generation system. LCD display function is implemented to enhanced the user's convenience and minimization of standby power consumption is realized by optimal design using CAD tools.

The Small Photovoltaic power supply using Hybrid Supercapacitor (하이브리드 커패시터를 적용한 소형 태양광 전원장치)

  • Kim, Tae-Yeop
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.826-831
    • /
    • 2019
  • The stand-alone photovoltaic power systems are widely used for lighting equipment and CCTV. In order for these devices to be competitive, the life of power storage devices such as batteries is very important. The characteristic Hybrid supercapacitor is the high power density and long life. We have proposed a stand-alone photovoltaic power system that uses hybrid supercapacitor. The charge and discharge characteristics and the internal resistance of the hybrid capacitor were measured to configure the power converter. A stable maximum output point tracking control algorithm is proposed even with the change in solar radiation. In order to verify the validity of the proposed system, a prototype was fabricated and tested using a 18W hybrid capacitor and a 10W solar cell.