• Title/Summary/Keyword: solar tracking

Search Result 449, Processing Time 0.026 seconds

A Novel Battery Charger/Discharger For the Parallel Connected Battery Module Satellite Power System (인공위성 병렬 연결 배터리 모듈 시스템을 위한 새로운 배터리 충.방전기)

  • 이기선;조윤제;장기영;조보형
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.537-543
    • /
    • 2000
  • A novel integrated battery charger/discharger converter for a standardized battery module is proposed. Instead of using separate charger and discharger converters, it integrates these two converters into a single converter in order to minimize the size. The integrated charger/discharger converter not only regulates the solar array output power including the peak power tracking capability but also controls the battery charging/discharging current depending on the solar array output power and the load power. In addition, it offers a regulated bus voltage which simplifies the power distribution/conversion for the pay load.

  • PDF

Maximum Power Tracking Control of Solar Cell by using the Step-down Chopper (강압쵸퍼에 의한 태양전지의 최대출력점 추적제어)

  • Sung, Nark-Kuy;Lee, Seung-Hwan;Kim, Sung-Nam;Kim, Yong-Joo;Han, Kyung-Hee;Chung, Yon-Tack
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.351-353
    • /
    • 1994
  • The solar cell should be operated at the maximum power point every instant. Because this maximum power point is fluctuating due to the change in the insolation and temperature. In this paper, we propose a new maximum power' point tracker by using the microprocessor. The proposed step-down chopper system tracks always the maximum power point, regardless of the change in the insolation, temperature and load.

  • PDF

Tracking Control of Solar Power Plant Inverter using Model Predictive Control of Laguerre Functions (LMPC를 이용한 태양광발전소 인버터의 추종 제어)

  • Cho, Uk-Rae;Cha, Wang-Cheol;Park, Joung-Ho;Kim, Jae-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.106-111
    • /
    • 2014
  • Currently, the commonly used method for PWM(Pulse Width Modulation) Inverter of the Solar Power Plant. However, the limit of the developing performance to the non-linear and switch devices of the Inverter. Therefore, we propose a model predictive control techniques applied to Laguerre functions. LMPC(Laguerre functions model predictive control) reduces the number of computations made and so online implementation becomes possible where traditional MPC would have fail. In this paper, we comment on the appropriate scope and functions degree of the LMPC inverter control. The simulation results from MATLAB are also provided.

A Design of LED Lighting Controller for use of Solar Battery (태양전지 이용을 위한 LED 조명 제어기 설계)

  • Kim, Byun-Gon;Lee, Ok-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.18-27
    • /
    • 2011
  • LED lighting because of high efficiency, long life, friendly environment, as a general lighting of the next generation, has been substituted for incandescent bulb and fluorescent lamp. The proposed system for use of solar battery is the intelligent controller for LED street lights which is improved the method of battery charging and charging efficiency in winter to extend battery life cycle, controlled lighting current according to SoC and in steps. Also, it is implemented emotional lighting which is controlled with the surrounding environment, by using colorful sub LED to take up 10[%] of a source of total light, white LED. As a lab results, the proposed system was implemented functions to adapt to the environmental changes, and improved the charging efficiency and battery life cycle.

A Study on the Two-Mode MPPT Control Algorithm and Efficiency Evaluation Method (Two-Mode MPPT 알고리즘 연구 및 효율평가법)

  • Yu, Gwon-Jong;Kim, Ki-Hyun;Jung, Young-Seok;Kim, Young-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • In this paper described common MPPT(Maximum Power Point Tracking) control algorithm; Constant Voltage Control, P&O(Perturbation and Observation), IncCond(Incremental Conductance), and investigated it's efficiency. Through simulation and efficiency evaluation, analyze the steady/transient states characteristics and efficiency of control algorithms respectively. Also, To high-efficiency proposed Two-mode MPPT control for improve on the existing control algorithm. Moreover, this paper suggested a topology for MPPT measuring efficiency and a method of examination.

  • PDF

A Study of New Highly Efficient MPPT Control Algorithm (새로운 고효율 MPPT 제어 알고리즘 고찰)

  • Yu, Gwon-Jong;Jung, Young-Seok;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.11-20
    • /
    • 2002
  • This paper proposed a MPPT(Maximum Power Point Tracking) control algorithm for PV(Photovoltaic) array based on a modified constant voltage control MPPT algorithm at low insolation. This method which combined a reference voltage control and a constant voltage control algorithm. In contrast to the typical conventional MPPT algorithm, the proposed method have been obtained high efficiency and good performance in all insolation intensity. The proposed algorithm is verified through simulation and experiment.

A Study on the MPPT Control Method for Grid-connected Multi-String Three-Phase Three-Level PV Inverter (계통연계형 멀티스트링 3상 3레벨 태양광 인버터의 MPPT 제어방법에 관한 연구)

  • Kim, Jinsoo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.43-48
    • /
    • 2014
  • Two-level inverter has some disadvantages like high harmonics contained in the output current, efficiency limit and stress to switching device as IGBT and FET. Many researches have reported multi-level inverter to complement two-level inverter of problems. In this paper, we suggest MPPT algorithm of multi-string three-level solar inverter that considered nowadays. We added midpoint controller in order to implement the MPPT algorithm because the three-level inverter has to need midpoint controller and procured the stability of direct current link. We verify the superiority of multi-string T-Type inverter and the algorithm we suggested with solar irradiance variation experiment and MPPT efficiency measurement. The MPPT efficiency was confirmed with a high efficiency more than 99.97%.

Preliminary Design of a Power Control and Distribution Unit for a Small LEO Satellite Application (소형 저궤도 위성적용을 위한 전력조절분배기 예비설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Baek;Jang, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1438-1440
    • /
    • 2005
  • A power control and distribution unit(PCDU) plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. In this work, we perform the preliminary design of a PCDU scheme for the small LEO Satellite applications. The main constitutes of the PCDU are the battery interface module, the auxiliary supply modules, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, internal converter modules for regulated bus voltage generation. and instrument power distribution modules.

  • PDF

A Efficient MPPT Control Algorithm for LED Street Lighting System using Photovoltaic Systems (태양광을 이용한 LED가로등 시스템을 위한 효율적인 MPPT 충전제어 알고리즘)

  • Kim, Byun-gon;Jeong, Dong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.675-676
    • /
    • 2014
  • Photovoltaic (PV) systems bosed on solar energy offer an environmentally friendly source of electricity. A key feature of such PV sysem is the efficiency of conversion at which the power converter stage can extract the energy from the PV arrays and deliver to the load. The Maximum power point tracking (MPPT) of the PV output for all sunshine conditions allows reduction of the cost installation and maximizes the power output from the PV panel. The proposed algorithm is to control the width of the pulse for battery charging based on the open voltage of the PV panel. As a lab results, the proposed system was implemented functions to adapt to the changes of the PV open voltage, and improved the charging efficiency.

  • PDF

Novel Peak-Power Tracking Algorithm for Photovoltaic Conversion System

  • Kim, Sil-Keun;Hong, Soon-Ill;Hong, Jeng-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.25-31
    • /
    • 2007
  • In this paper, a novel MPPT(Maximum Power Point Tracking) algorithm for power of PV(Photovoltaic) systems is presented using a boost converter for a connected single phase inverter. On the basic principle of power generation for the PV(photovoltaic) module, the model of a PV system is presented. On the basis of this model, simulation of this PV system and algorithms for maximum power point tracking are described by utilizing a boost converter to adjust the output voltage of the PV module. Based on output power of a boost converter, single phase inverter uses predicted current control to control four IGBT#s switch in full bridge. Furthermore, a low cost control system for solar energy conversion using the DSP is developed, based on the boost converter to adjust the output voltage of the PV module. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation. Finally, experimental results confirm the superior performance of the proposed method.