• Title/Summary/Keyword: solar space heating

Search Result 131, Processing Time 0.021 seconds

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

An Experimental Study of Solar fir Roof Heating System With PVT Collector (공기식 집열 지붕 난방시스템의 실험 연구)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.232-237
    • /
    • 2008
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The extraction of hot air from the space will enhance the performance of BIPV systems. The solar collector utilizing these two aspects is called PV/T(photovoltaic/thermal) solar collector. This research is about the development of solar roof system with PV/T collector to apply into buildings. A test cell experiment was performed with the PVT roof installed: It found that the hot air supply from the PVT air collector contributed to increase the heating efficiency by 2 times and the electrical efficiency by about 8%.

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.53-59
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a green-house culture facility for reducing healing cost, Increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex In Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely Investigated by changing the control condition based on the temperature difference which Is the most important operating parameter For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, It is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Performance Analysis of Solar Thermal System with Heat Pump for Domestic Hot Water and Space Heating (온수 급탕 및 난방을 위한 히트 펌프 태양열 시스템의 성능 분석)

  • Sohn, Jin-Gug
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.49-62
    • /
    • 2018
  • This study aims to analyze the performance of solar thermal system with heat pump for domestic hot water and heat supply. There are four types of system. Systems are categorized based on the existence of a heat pump and the ways of controlling the working fluid circulating from the collector. Working fluid is controlled by either temperature level (categorized as system 1 and 2) or sequential flow (system 3 and 4). Heat balance of the system, the solar fraction, hot water and heating supply rates, and performance of heat pump are analyzed using TRNSYS and TESS component programs. Technical specifications of the main facilities are as follow; the area of the collector to $25m^2$, the volumes of the main tank and the buffer tank to $0.5m^3$ and $0.8m^3$, respectively. Heating capacity of the heat pump in the heating mode is set to 30,000 kJ / hr. Hot water supply set 65 liters per person each day, total heat transfer coefficient of the building to 1,500 kJ / kg.K. Indoor temperature is kept steadily around $22^{\circ}C$. The results are as follows; 6 months average solar fraction of system 1 turns out to be 39%, which is 6.7% higher than system 2 without the heat pump, indicating a 25% increase of solar fraction compared to that of system 2. In addition, the solar fraction of system 1 is 2% higher than that of system 3. Hot water and heating supply rate of system 1 are 93% and 35%, respectively. Considering the heat balance of the system, higher heat efficiency, and solar fraction, as whole, it can be concluded that system 1 is the most suitable system for hot water and heat supply.

A Study on Application of Radiant Floor Heating in Large Space (대공간의 바닥 복사 난방 적용에 관한 연구)

  • Ahn, Min-Hee;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.79-85
    • /
    • 2007
  • This paper addresses the indoor air quality when radiant floor heating is applied in large space. Radiant heat exchange between surfaces depends on the orientation and the temperature of the surfaces. Also, the temperature and the radiant characteristic of the wall and the roof that face the floor have great influence on the indoor air environment due to the largeness of the wall and the roof in large spaces. In this study, we simulate a test-cell(25X20X10) using a ies YE And using a CFD(microflo in VE), an indoor air environment was investigated to establish the optimum temperature of floor. At the first time of the heating, high floor temperature is demanded. At the middle of the heating, however, the temperature of the residential space was formed appropriately, although the temperature of the floor was set low.

A study about caculating the heating load of the wall of underground space to be used undereground temperature (지중온도를 이용한 지하공간 벽체의 난방부하 계산에 관한 연구)

  • Jeong, Soo-Ill
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • The energy crisis is culminating for the life of the fossil fuel in the future which is come to end at $30{\sim}40$ years. Moreover above 90% of the energy in our country depend on importing and the crisis is more seγious than it of other countries. So architects devote low energy house research and it means underground space research have become public opinion. But there is not an accurate and utility method calculating the heating load of underground space. In this study it is proposed that the heating load is calculated by setting adiabatic thichness of soil and predicting underground temperature. The prediction of the underground temperature is calculated by the latitude, the level, the distance from sea, the condition of earth surface.

Demonstration study on Heating and Hot water According to Control Condition of Solar System (태양열 시스템의 제어조건에 따른 난방 및 급탕 실증연구)

  • Kwak, Hee-Youl;Kim, Jeong-Bae;Joo, Hong-Jin;Kim, Jong-Bo
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.119-126
    • /
    • 2006
  • This study describes thermal performance of heating and cooling demonstration system using ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about $350m^2$ was heated and cooled using that system. The demonstration system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, and subsidiary tank. From January to March in 2006, demonstration test were performed with 4 control mode to find the optimum control condition for solar thermal system. After experiments and analysis, this study found that solar thermal system of control mode IV was corresponded to 78% for the hot water supply and 49% for space heating.

Study on the Operation of the Solar Heating System with Ground Source Heat Pump as a Back-up Device (지열히트펌프 보조열원식 태양열 난방급탕 시스템 작동에 관한 연구)

  • Kim, Hwidong;Baek, Namchoon;Lee, Jinkook;Shin, Uchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.197.2-197.2
    • /
    • 2010
  • The study on the operation characteristics of solar space and water heating system with ground source heat pump (GSHP) as a back-up device was carried out. This system, called solar thermal and geothermal hybrid system (ST/G), was installed at Zero Energy Solar House II (KIER ZeSH-II) in Korea Institute of Energy Research. This ST/G hybrid system was developed to supply all thermal load in a house by renewable energy. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH-II. Experiment was continued for seven months, from October to April. The analysis was conducted as followings ; - the contribution of solar thermal system. - the appropriateness of GSHP as a back-up device. - the performance of solar thermal and ground source heat pump system respectively. - the adaptation of thermal peak load - the operation characteristics of hybrid system under different weather conditions. Finally the complementary measures for the system simplification was referred for the commercialization of this hybrid system.

  • PDF

Study on long-term Performance characteristics of various solar thermal system for heating protected horticulture system (태양열 시설원예 난방시스템의 장기성능 특성 분석 연구)

  • Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this research is to study on the analysis of long-term performance characteristics of various solar thermal system for heating protected horticulture system for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Long term field test for the demonstration was carried out in horticulture complex in Jeju Island. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

The Analysis of Optimum Design Parameters for a Solar Space Heating System through Computer Simulation (시뮬레이션에 의한 태양열 난방의 최적설계에 관한 연구)

  • Seoh, Jeong-Il;Lee, Young-Soo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.3
    • /
    • pp.175-186
    • /
    • 1985
  • This paper presents a method for estimating the useful output of solar space heating system and estimates their performance with variance of collector size, storage volume, collector tilt and other factors . The analysis is performed by the computer simulation and by 'running' conceptual systems against solar intensities and ambient temperature for a model year stored in a computer. System performance is analyzed on monthly and yearly basis respectively and at the same time, the economics of various systems are evaluated . And also, this paper shows how an optimized design can be selected for any locality for which solar data, economic parameters and system performance are provided. It is shown that storage volume of 75 liter per $m^2$ of solar collector lead to the best design.

  • PDF