• Title/Summary/Keyword: solar photovoltaic systems

Search Result 401, Processing Time 0.029 seconds

Study on the Analysis Performance of PVT system using the Dynamic Simulation (동적 시뮬레이션을 이용한 태양광열 시스템의 성능특성 분석)

  • Kim, Sang-Yeal;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: A photovoltaic/thermal system is a solar collector combining photovoltaic module with a solar thermal collector, which produces electricity and heat at the same time. PVT system removes heat from PV module through air or liquid that would help to raise the efficiency of the PV systems performance. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. However, even though various of PVT system were developed and several systems were applied to practical use, there have been few researches for the performance analysis using the dynamic simulation. Method: In this study, the review of recent research and development trend for PVT systems were conducted. Furthermore, in order to develop the optimum design method, the performance analysis for PVT system was conducted by a dynamic simulation. Result: In the results, it was found that the performance of PVT system significantly depends on the ambient temperature and solar radiation. Moreover, in the weather condition of Seoul, average efficiency of electricity and heat in heating season were 13.79 and 41.85%, and they in cooling season were 14.39% and 26.18%, respectively.

A High Performance Interleaved Bridgeless PFC for Nano-grid Systems

  • Cao, Guoen;Lim, Jea-Woo;Kim, Hee-Jun;Wang, Huan;Wang, Yibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1156-1165
    • /
    • 2017
  • A high performance interleaved bridgeless boost power factor correction (PFC) rectifier operating under the critical current conduction mode (CrM) is proposed in this paper to improve the efficiency and system performance of various applications, such as nano-grid systems. By combining the interleaved technique with the bridgeless topology, the circuit contains two independent branches without rectifier diodes. The branches operate in interleaved mode for each respective half-line period. Moreover, when operating in CrM, all the power switches take on soft-switching, thereby reducing switching losses and raising system efficiency. In addition, the input current flows through a minimum amount of power devices. By employing a commercial PFC controller, an effective control scheme is used for the proposed circuit. The operating principle of the proposed circuit is presented, and the design considerations are also demonstrated. Simulations and experiments have been carried out to evaluate theoretical analysis and feasibility of the proposed circuit.

Charge Transport Characterization of PbS Quantum Dot Solids for High Efficiency Solar Cells

  • Jeong, Young Jin;Jang, Jihoon;Song, Jung Hoon;Choi, Hyekyoung;Jeong, Sohee;Baik, Seung Jae
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.272-276
    • /
    • 2015
  • The PbS quantum dot is an emerging photovoltaic material, which may provide high efficiency breakthroughs. The most crucial element for the high efficiency solar cells's development is to understand charge transport characteristics of PbS quantum dot solids, which are also important in planning strategic research. We have investigated charge transport characteristics of PbS quantum dot solids thin films using space charge limited conduction analysis and assessed thickness dependent photovoltaic performances. The extracted carrier drift mobility was $low-10^{-2}cm^2/Vs$ with the estimated diffusion length about 50 nm. These and recently reported values were compared with those from a commercial photovoltaic material, and we present an essential element in further development of PbS quantum dot solids materials.

Recent trends in photovoltaic industries (태양광 발전의 최근 업계 동향)

  • ;;;;;A. U. Ebong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.93-107
    • /
    • 1997
  • A solar cell is a device which converts solar energy into electricity without any polluting by-product. Solar cells are useful when they are connected together to form modules. Total production of PV modules worldwide jumped 20 % in 1995 to reach a new record 84.8 MW. In this paper, the recent market trends in photovoltaic industries, principles and characteristics of solar cells and photovoltaic systems are reviewed.

  • PDF

Design Method and Development Status of Photovoltaic System (태양광발전시스템의 설계법과 개발동향)

  • Yu, Kwon-Jong;Song, Jin-Soo;Jung, Myong-Woong;Kang, Kee-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1048-1051
    • /
    • 1992
  • The design method is a crucial factor for the successful operation of photovoltaic system. A design method is proposed and applied practically to a stand-alone system of 25KWp aimed at the power supply for a remote-island. In this paper the operation results of this system are discussed. In addition, the current status and future prospects at home and abroad on the development of photovoltaic systems are also described.

  • PDF

Demonstration Research of Photovoltaic System with Solar Reflectors (반사판을 이용한 태양광발전시스템 실증연구)

  • Kim, Yong-Sik;Kang, Gi-Hwan;Sim, Sang-Yong;Lee, Hoo-Rock;Lee, Jin-Seob;Hong, Jin-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2009
  • This paper aims at enhancing the electric production efficiency of photovoltaic(PV) system. The electrical power of PV system is proportional to light intensity on a PV module surface. In this paper, we apply two types of systems to enhance power generation efficiency. First, of all, concentring sunlight using specular surface and one-axis tracking system which traces the sun with vertical direction are applied in this project. From this, we analyze the fixed type method and power generation efficiency.

A Study on the Application of Solar Energy System in Apartment Complex (공동주택단지에서의 태양에너지 시스템 적용에 관한 연구)

  • Jung, Sun-Mi;Chung, Min-Hee;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-48
    • /
    • 2009
  • In this study, through case studies, solar energy systems were coordinated with architectural plan elements and the others in apartment complex, and the energy performance was evaluated quantitatively through computer simulation PVSYST and RETScreen. As a results, in plan process of the application of solar energy systems in apartment complex, solar energy system should be considered as not only energy reducing technical element but also part of architectural plan element. And it must be considered with architectural plan elements, composition methods, energy storage methods, technical elements from the early basic plan stage. Photovoltaic system was installed on the wall facing the south and rooftop. The energy ratio of electric load was shown to be 5.5%. The result showed 7.2% when adding it to shading device additionally, and 6.4% in case of putting extra translucent module on windows. Active solar collecting system was applied on roof with the angle of 45. Maximum number of solar collector was 10 in a row, and the total solar collecting area was $915.00m^2$. The energy ratio of domestic water heating load by active solar hot water system is shown to be 11.4%.

  • PDF

Performance Evaluation of Fixed-concentrated Photovoltaic/Thermal Hybrid Panel using Reflector (반사판을 이용한 고정식 집속형 태양광.열복합패널의 성능평가)

  • Seo, Yu-Jin;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.85-92
    • /
    • 2005
  • One of the most effective methods for utilizing solar energy is to combine thermal solar and optical energy simultaneously using a hybrid panel. Many systems using various kinds of photovoltaic panels have already been constructed. But utilizing solar energy by means of a hybrid panel with concentrator has not been to be attempted yet. Normally if sunlight is directed on the solar cell, and there is no increase in temperature, the absorption energy of each cell will increase per unit area. In a silicon solar cell. however, cell conversion efficiency decreases according to the increasing temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. we design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect effectively thermal energy. We compared performance of new hybrid panel with PV module and thermal panel. We also evaluated conversion efficiency, electric power and thermal capacity and confirmed cooling effect from thermal absorption efficiency.

Performance Evaluation and Technical Development of Eco-environmental Photovoltaic Leisure Ship with Sail-controlling Device With Respect to Solar-Hybrid Generating System (풍력 Sail 돛 제어장치를 이용한 친환경 태양광 레져보트의 하이브리드 발전시스템 관련 성능평가에 대한 연구)

  • Oh, Kyoung Gun;Moon, Byung Young;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.57-67
    • /
    • 2016
  • As a new technical approach, an attempt was made to realize a photovoltaic system for an eco-environmental leisure ship by simultaneously actuating nine photovoltaic solar panels in association with the application of a sail-controlling system using wind energy. In this approach, the photovoltaic system consisted of a solar module, an inverter, a battery, and the relevant components, while the sail-controlling device was equipped with sail up/down and mast turning systems. The previously mentioned eco-environmental leisure ship utilizes a photovoltaic hybrid system that uses solar and wind energy as renewable energy sources. Furthermore, this research included a performance evaluation of the manufactured prototype, the acquisition of the purposed quantity values, and development of the purposed items. The significant items, including the sail up/down speed (seconds) and mast turning angle (degrees) were evaluated for a performance test. A wind direction sensitivity of 90% and maximum instant charging power of 900 W were also obtained in the process of the performance evaluation. In addition, the maximum sail time was also evaluated in order to acquire the optimum value. The performance evaluation showed that the prototype with a photovoltaic hybrid system was suitable for sailing an eco-environmental leisure ship using solar and wind energy.

Optimum Design of Dye-Sensitized Solar Module for Building-Integrated Photovoltaic Systems

  • Lee, Kyu-Seok;Kang, Man Gu
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.859-865
    • /
    • 2017
  • This paper presents a method for determining the optimum active-area width (OAW) of solar cells in a module architecture. The current density-voltage curve of a reference cell with a narrow active-area width is used to reproduce the current density profile in the test cell whose active area width is to be optimized. We obtained self-consistent current density and electric potential profiles from iterative calculations of both properties, considering the distributed resistance of the contact layers. Further, we determined the OAW that yields the maximum efficiency by calculating efficiency as a function of the active-area width. The proposed method can be applied to the design of the active area of a dye-sensitized solar cell in Z-type series connection modules for indoor and building-integrated photovoltaic systems. Our calculations predicted that OAW increases as the sheet resistances of the contact layers and the intensity of light decrease.