• Title/Summary/Keyword: solar heat collector

Search Result 253, Processing Time 0.032 seconds

Verification Experiment and Analysis for 6kW Solar Water Heating System(Part 3 : Optimum Design and Economic Evaluation) (6kW급 태양열 온수급탕 시스템의 실증실험 및 분석(제3보 최적설계 및 경제성평가))

  • Choi Bong Su;Lee Bong Jin;Kang Chaedong;Hong Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2005
  • The goal of the present paper is to show the optimum design and operation conditions on 6 kW solar water heating system by using computer simulation with verified modelling. As the object functions, we took not only the amount of acquired and auxiliary heat but LCC, which has a relative importance and decisive role in economy. As expected, the maximum heat is acquired at the slope of collector with the equal degree to the latitude, facing the south. The capacity increase of the circulation pump and the storage tank lead to the increase of acquired heat and the decrease of auxiliary heat, but do not necessarily give economical advantages owing to additional electrical power consumption. In the present system, the minimum LCC can be obtained at the storage tank volume of 450 L and the mass flow rate of 0.344 kg/s.

Thermal Performance of Air Receiver filled with Porous Material for $5kW_t$ Dish Solar Collector (공기식 흡수기를 이용한 5kW급 접시형 태양열 집열기의 열성능 해석)

  • Seo, Joo-Hyun;Ma, Dae-Sung;Kim, Yong;Seo, Tae-Beom;Kang, Yong-Heack;Lee, Sang-Nam;Han, Gui-Young
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.570-575
    • /
    • 2007
  • The thermal performance of the air receiver filled with porous material for 5kWt dish solar collector installed in Inha University, Korea, is experimentally investigated. The diameter of the parabolic dish is 3.2 m, and its focal length is 2 m. It consists of 10 small pieces of glasses which have their own curvatures, and the effective reflecting area is 5.9 m2. The reflectivity of the glass is 0.95, and the thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. A quartz window is installed at the receiver aperture to minimize the convective heat loss and prevent air leakages. In order to increase the heat transfer area, porous material (nickel-alloy) is inserted into the receiver. Air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. The volumetric flow rates of air are varied from 600 to 1200 L/min. The thermal efficiency of the receiver ranges from 82% - 92% depending upon the flow rate. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected. These results from the experiment will be useful for the applications to air heating receivers and solar reactors.

  • PDF

Status of High-Efficiency Solar Collector for Industrial Utilization (산업용 고효율 태양열집열기 개발 필요성)

  • Kwak, Hee-Youl
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.19-29
    • /
    • 1998
  • Solar energy is a quantitatively unlimited, clean and non-pollutant source. It has a great potential for industrial commercial usages. For example, solar hot water system for domestic usage has been very popular in many counties. In Korea, the industries consume 47.7% of the total national energy, and the manufacturing sector uses 91.5% out of it. The main energy resoures available in Korea are oils, coals, and gases. There have been continuous efforts among the industries to reduce such energy consumptions by using alternative energy resources, such as solar energy, yet the technology has limited its proper applications to a level of satisfaction. In some advanced countries, research and development programs in solar energy applicable to the industrial usages are very active, and some systems are in the commercial market. Therefore, this paper describes the status and the feasibility for high-efficiency evacuated solar collector which was anticipated to applied for industrial process heat as an alternative of fossil energy.

  • PDF

A Simulation for the Stratified Thermal Storage System in Residential Solar Energy Application (주거용 태양열 성층축열시스템의 시뮬레이션)

  • Pak, Ee-Tong;Yoo, Ho-Seon
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.44-52
    • /
    • 1991
  • The benefits of thermal stratification in sensible heat storage systems has been considered and studying by several investigators. In this paper, the basic data which is hard to obtain normally through the experiment were obtainable through the computer simulation. The major objectives of the study were to assess the benefits of stratified storage in residential solar water heating application and to suggest the optimum design parameters. From the computer simulation, following results were obtained. 1. The solar load fraction increases with increasing the number of tank segments. In these simulation, the magnitude of the improvement was about 10%. 2. The solar load fraction increases when the ratio of diameter to height of the tank(H/D) increases to 3, but H/D exceed 3 then, the solar load fraction decreases. In these simulation, the magnitude of the improvement was about 3%. 3. Increasing the collector flow rate slightly improved the performance of the mixed storage system(Node=1). But, for the stratified storage system(Node=N), the solar load fraction increases with decreasing flow rate until the point is reached at which the collector outlet temperature reaches the boiloff limit of $100^{\circ}C$ over some portion of the simulation period.

  • PDF

The Performance and Efficiency Analysis of PVT system : A Review (선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석)

  • Euh, Seung-Hee;Kim, Dae-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.57-66
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box channel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency, cutting down the cost, and making them more competitive in the energy consumption market.

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

CFD Analysis for Spiral-Jacketed Thermal Storage Tank in Solar Heating Systems (태양열 시스템에 적용된 나선재킷형 축열조의 CFD 해석)

  • Nam, Jin-Hyun;Kim, Min-Cheol;Kim, Charn-Jung;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.645-653
    • /
    • 2008
  • Spiral-jacketed thermal storage tanks can greatly simplify solar heating systems while maintaining the thermal performance at a similar level as conventional systems with an external heat exchanger. Proper design of the spiral-jacket flow path is essential to make the most of solar energy, and thus to maximize the thermal performance. In the present work, computational fluid dynamics (CFD) analysis was carried out for a spiral-jacketed storage tank installed in a solar heating demonstration system. The results of the CFD analysis showed a good agreement with experimentally determined thermal performance indices such as the acquired heat, collector efficiency, and mixed temperature in the storage tank. This verified CFD modelling approach can be a useful design tool in optimizing the shape of spiral-jacket flow path and the flow rate of circulating fluid for better performance.

Basic Operational Characteristics for Developments of Solar Air Heater for Air Heating in Winter (태양열 이용 난방용 공기가열기 개발을 위한 기초 운전 특성)

  • Kim, Jong-Ryeol;Hong, Boo-Pyo;Woo, Jong-Soo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.87-94
    • /
    • 2011
  • To develop the solar air heater, prototype of solar heater with test room set up on the roof of test chamber and operation characteristics were examined with solar radiation. Air induced from outside was supplied by a blower and also heated air was supplied to the test chamber(size of 1,000mm(inwidth)*2,000mm(in length)*2,000mm(in depth)) established already for performance. It was clear that almost 30% of solar radiation was converted into effective heating energy at maximum and the highest air temperature was $46^{\circ}C$, and thus solar air heater in winter could be used as an possible alternative heating system in building. Furthermore, heat energy obtained from solar air heater can be applied to regenerate absorber in the solar desiccant cooling system.

The Performance and Efficiency Analysis of PVT system : A Review (선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석)

  • Euh, Seung-Hee;Kim, Dae-Hyun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.250-255
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box charmel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency and cutting down the cost, making them more competitive in the energy consumption market.

  • PDF

Development of f-chart for the Design of Solar Heating Systems (태양열난방장치 설계를 위한 f-chart 개발)

  • Song Dal-Sun;Yoo Seong-Yeon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.3
    • /
    • pp.292-298
    • /
    • 1986
  • The new f-chart capable of estimating long-term thermal performance of solar space and water heating systems was developed. The system comprise a flat plate solar collector, heat exchanger, storage tank filled with water, auxiliary fuel fired heater, and a house structure. The information obtained from many simulations of solar heating systems has been used to develop this f-chart. Actual hourly meteorological data collected in Seoul, Daejeon, Kwangju and Daegu, Korea from 1979 to 1983 have been utilized in these simulations. The new f-equation is as follows: $$f=1.034Y_{-}0.0968X_{-}0.2235Y^2+0.0043X^2+0.0144Y^3$$. The system performance estimates obtained from the developed f-chart are in close agreement with the results of experiment.

  • PDF