• 제목/요약/키워드: solar collector

검색결과 442건 처리시간 0.024초

이중 블라인드 광파이프 주광 조명시스템 효율 및 조명에너지 절감량 평가 연구 (Evaluation Study of a Double Blind Light Pipe Daylighting System Efficiency and an Illumination Energy Reduction)

  • 강은철;유성연;이의준
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.89-95
    • /
    • 2013
  • A DBLP(Double blind light pipe) daylight system can be installed at a building exterior wall or roof to replace artificial light during the day time. This system was consisted of a double blind light collector, a mirror duct type light transformer and a prism light pipe distributor. The double blinds were used to track the sun's altitude and azimuth movements to collect the sunlight throughout the day. The sunlight collected by the light collector was reflected on the first mirror and the second mirror and sent to the light pipe through the light transformer. The transformer was designed to deliver the sunlight into the light pipe efficiently. The light distributor plays a role in diffusing the sunlight coming in through the light collector to be used for indoor lighting. In this paper, a DBLP system has been designed, installed and tested at a KIER daylighting twin test cell. The DBLP daylighting system was applied to the experimental test cell which has an indoor area of 2.0 m wide ${\times}$ 2.4 m height ${\times}$ 3.8 m length. The experiment was conducted from January 30 to February 27, 2012, under clear skies and partially cloudy skies. Data was collected from 10:00 am to 16:00 pm every 2 minute and the average was calculated for every 30 minute of the data collection to obtain the system efficiency. The results indicated that the DBLP system efficiency was evaluated as 11.67%. The DBLP system indoor illumination energy reduction was predicted as 0.822 kWh/day. This could replace 4 sets of a 32W fluorescent lamp operating 6.4 hours per a day.

평판형 태양열 집열기의 압력강하 및 열전달 성능 향상에 관한 수치해석적 연구 (Numerical study on the pressure drop and heat transfer enhancement in a flat-plate solar collector)

  • 허주녕;신지영;이두호;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.316-323
    • /
    • 2013
  • 평판형 태양열 집열기의 성능을 향상시키기 위하여 다양한 형태의 형상과 크기의 인공 거칠기가 가장 일반적이고 효과적으로 사용된다. 본 연구에서는 다양한 형상의 립을 삽입한 사각 채널에서의 열전달 특성 및 압력강하에 대하여 수치해석을 수행하였다. 사각 채널의 윗 평판에 일정한 열유속을 가하였다. 삽입된 립의 형상은 rib $90^{\circ}$, groove $90^{\circ}$, groove $60^{\circ}$, baffle $90^{\circ}$, baffle $60^{\circ}$, wave $90^{\circ}$, wave $60^{\circ}$ 모델이다. 작동유체는 공기이며 Reynolds 수는 3200~17800의 범위이다. 다양한 형태의 립 형상에 따른 시스템의 성능을 예측하기 위하여 Nusselt 수와 마찰인자를 고찰하였다. 모든 형태의 립에서 속도가 증가할수록 Nusselt 수와 압력강하는 증가하였다. 열전달 향상과 압력강하가 가장 높은 모델은 baffle $90^{\circ}$ 모델이지만, 열전달 특성과 압력강하를 고려하여 나타낸 성능계수에서는 groove $60^{\circ}$ 모델이 가장 크게 나왔다. 따라서 평판형 태양열 집열기에서는 열전달 향상과 압력강하를 항상 동시에 고려한 설계가 필요하다.

일조해석 프로그램, SunChart 개발에 관한 연구 (A Study on the Development of Sunlight Analysis Program "SunChart")

  • 신우철;장문석;백남춘
    • 한국태양에너지학회 논문집
    • /
    • 제22권4호
    • /
    • pp.10-17
    • /
    • 2002
  • This study aims to develop the analysis tool that assesses the sunlight at any given point of a window or solar collector array shaded by surrounding obstacles. The development of this software, named SunChart, focused to the user-friendliness and the reliability. This SunChart can calculate the solar radiation as well as shading on the certain face. The calculation results by SunChart show by both numerically and graphically and are in a good agreement with ones obtained from "Sunrise Sunset" developed at Korea Astronomy Observatory and from TRNSYS.

단독주택용 태양열/지열 융복합시스템의 태양열 급탕성능 평가 (An Evaluation of the Solar Thermal Performance of the Solar/Geo Thermal Hybrid Hot Water System for a Detached House)

  • 백남춘;한승현;이왕제;신우철
    • 설비공학논문집
    • /
    • 제27권11호
    • /
    • pp.581-586
    • /
    • 2015
  • In this study, an analysis was performed on the performance of the solar water heating system with geo-thermal heat pump for a detached house. This system has a flat plate solar collector ($8\;m^2$) and a 3 RT heat pump. The heat pump acts as an auxiliary heater of the solar water heating system. These systems were installed at four individual houses with the same area of $100\;m^2$. The monitoring results for one year are as follows. (1) The average daily operating time of the solar system appeared to be 313 minutes in spring (intermediate season), and 135 minutes and 76 minutes in winter and summer respectively. The reason for the short operating time in summer is the high storage temperature due to low water heating load. The high storage temperature is caused by a decrease in collecting efficiency as well as by overheating. (2) The geothermal heat pump as an auxiliary heater mainly operates on days of poor insolation during the winter season. (3) Despite controlling for total house area, hot water consumption varies greatly according to the number of people in the family, hot water usage habits, etc. (4) The yearly solar fraction was 69.8 to 91.5 percent, which exceeds the maximum value of 80% as recommended by ASHRAE. So the solar collector area of $8\;m^2$ appeared to be somewhat greater for the house with an area of $100\;m^2$. (5) The observed annual efficiency of solar systems was relatively low at 13.5 to 23.6%, which was analyzed to be due to the decrease in thermal efficiency and the overheating caused by a high solar fraction.

공기식 흡수기를 이용한 5kW급 접시형 태양열 집열기의 열성능 해석 (Thermal Performance of Air Receiver filled with Porous Material for $5kW_t$ Dish Solar Collector)

  • 서주현;마대성;김용;서태범;강용혁;이상남;한귀영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.570-575
    • /
    • 2007
  • The thermal performance of the air receiver filled with porous material for 5kWt dish solar collector installed in Inha University, Korea, is experimentally investigated. The diameter of the parabolic dish is 3.2 m, and its focal length is 2 m. It consists of 10 small pieces of glasses which have their own curvatures, and the effective reflecting area is 5.9 m2. The reflectivity of the glass is 0.95, and the thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. A quartz window is installed at the receiver aperture to minimize the convective heat loss and prevent air leakages. In order to increase the heat transfer area, porous material (nickel-alloy) is inserted into the receiver. Air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. The volumetric flow rates of air are varied from 600 to 1200 L/min. The thermal efficiency of the receiver ranges from 82% - 92% depending upon the flow rate. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected. These results from the experiment will be useful for the applications to air heating receivers and solar reactors.

  • PDF

Effect of carrier collector on the Efficiency of DSSCs

  • Ramasamy, Easwaramoorthi;Lee, Won-Jae;Lee, Dong-Yun;Song, Jae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.633-634
    • /
    • 2005
  • Transparent conducting glasses exhibit high ohmic losses that are apparent in the case of large size Dye Sensitized Solar Cells (DSSCs). In this study, we investigated the impact of current collectors over the efficiency of DSSCs. The Silver current collectors were prepared on both counter electrode and working electrode surface by screen printing method. For long term stability in electrolyte environment and also to avoid the charge recombination, current collectors are protected by sodium silicate overcoat layer. These current collectors were characterized for their microstructure parameters. Also current collector's stability in electrolyte environment has been investigated.

  • PDF

Thermal performance investigation of enhanced receiver tube for concentrated solar collector

  • Mohammed Al-Harrasi;Afzal Husain;M. Zunaid
    • Advances in Energy Research
    • /
    • 제8권3호
    • /
    • pp.137-144
    • /
    • 2022
  • This study presents an experimental investigation of conventional and enhanced receiver tube performance for the application of a concentrated parabolic trough collector (CPC). The CPC system is fabricated and tested for the conventional and enhanced receiver tubes. The experiments were performed on both tubes for the change of flow rates. The temperature rise of the tube surface, as well as working fluid, were monitored for varying flow rates. The results were compared and discussed in view of enhanced CPC system performance. The results exhibited that the temperature rise of the working fluid passing through the tube was more in the case of the enhanced tube compared to the conventional receiver tube under the same flow rates.

태양열 이용 난방용 공기가열기 개발을 위한 기초 운전 특성 (Basic Operational Characteristics for Developments of Solar Air Heater for Air Heating in Winter)

  • 김종열;홍부표;우종수;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.87-94
    • /
    • 2011
  • To develop the solar air heater, prototype of solar heater with test room set up on the roof of test chamber and operation characteristics were examined with solar radiation. Air induced from outside was supplied by a blower and also heated air was supplied to the test chamber(size of 1,000mm(inwidth)*2,000mm(in length)*2,000mm(in depth)) established already for performance. It was clear that almost 30% of solar radiation was converted into effective heating energy at maximum and the highest air temperature was $46^{\circ}C$, and thus solar air heater in winter could be used as an possible alternative heating system in building. Furthermore, heat energy obtained from solar air heater can be applied to regenerate absorber in the solar desiccant cooling system.

태양열 이용기술 개발 현황 (Development of Solar Technology in Korea)

  • 강용혁;양윤섭
    • 태양에너지
    • /
    • 제18권2호
    • /
    • pp.1-17
    • /
    • 1998
  • 국내 태양열 이용기술 개발 현황을 분석하기 위해 기술의 중요성과 태양열의 특징을 소개한 후에 국내의 기술동향을 요소기술인 태양열집열기의 온수기, 산업용 중고온시스템 및 태양에너지건물이용기술순으로 분석하였다. 분석결과 우리나라의 기술수준은 저온이용분야인 온수급탕의 경우 실용화 수준이며, 산업용인 중고온분야는 기초 및 소비시장 확대에 의한 가격의 저렴화 및 정부의 지원정책으로 태양열에너지의 이용을 증대시킬 수 있을 것이다. 이어서 국내 일사량자원과 보급현황을 살펴본 후 대체에너지 기술개발 기본계획상의 중장기 목표와 각분야별 기술의 개요 및 특징을 소개하였다. 국제환경에 대응하면서 국내 태양열 이용 및 보급 확대를 위해서는 기술개발을 통하여 얻어진 결과들이 사장되지 않도록 경쟁성 확보 시점까지 지속적인 수요창출을 위한 경제성 확보를 위해 추가적인 보완연구, 실용화연구 및 실증시범연구 등이 필요하다.

  • PDF

선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석 (The Performance and Efficiency Analysis of PVT system : A Review)

  • 어승희;김대현
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.57-66
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box channel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency, cutting down the cost, and making them more competitive in the energy consumption market.