• Title/Summary/Keyword: soil-geosynthetic interaction

Search Result 9, Processing Time 0.018 seconds

An investigation into the effects of lime-stabilization on soil-geosynthetic interface behavior

  • Khadije Mahmoodi;Nazanin Mahbubi Motlagh;Ahmad-Reza Mahboubi Ardakani
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • The use of lime stabilization and geosynthetic reinforcement is a common approach to improve the performance of fine-grained soils in geotechnical applications. However, the impact of this combination on the soil-geosynthetic interaction remains unclear. This study addresses this gap by evaluating the interface efficiency and soil-geosynthetic interaction parameters of lime-stabilized clay (2%, 4%, 6%, and 8% lime content) reinforced with geotextile or geogrid using direct shear tests at various curing times (1, 7, 14, and 28 days). Additionally, machine learning algorithms (Support Vector Machine and Artificial Neural Network) were employed to predict soil shear strength. Findings revealed that lime stabilization significantly increased soil shear strength and interaction parameters, particularly at the optimal lime content (4%). Notably, stabilization improved the performance of soil-geogrid interfaces but had an adverse effect on soil-geotextile interfaces. Furthermore, machine learning algorithms effectively predicted soil shear strength, with sensitivity analysis highlighting lime percentage and geosynthetic type as the most significant influencing factors.

Soil-structure interaction analysis of beams resting on multilayered geosynthetic-reinforced soil

  • Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.369-383
    • /
    • 2012
  • In this paper, soil-structure interaction analysis has been presented for beams resting on multilayered geosynthetic-reinforced granular fill-soft soil system. The soft soil and geosynthetic reinforcements are idealized as nonlinear springs and elastic membranes, respectively. The governing differential equations are solved by finite difference technique and the results are presented in non-dimensional form. It is observed from the study that use of geosynthetic reinforcement is not very effective for maximum settlement reduction in case of very rigid beam. Similarly the reinforcements are not effective for shear force reduction if the granular fill has very high shear modulus value. However, multilayered reinforced system is very effective for bending moment and differential settlement reduction.

Strain rate effects on soil-geosynthetic interaction in fine-grained soil

  • Safa, Maryam;Maleka, Amin;Arjomand, Mohammad-Ali;Khorami, Masoud;Shariati, Mahdi
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.533-542
    • /
    • 2019
  • Geosynthetic reinforced soil method in coarse-grained soils has been widely used in last decades. Two effective factors on soil-geosynthetic interaction are confining stresses and loading rate in clay. In terms of methodology, one pull-out test with four different strain rates, namely 0.75, 1.25, 1.75 and 2.25 mm/min, and three different normal stresses equal to 20, 50, and 80 kg have been performed on specimens with dimensions of 30×30×17 cm in the saturated, consolidated condition. The obtained results have demonstrated that activation of geosynthetic strength at contact surface depends on the applied stress. In addition, the increase in normal stress would increase the shear strength at contact surface between clay and geogrid. Moreover, it is concluded that the strain rate increment would increase the shear strength.

Sand-Nonwoven geotextile interfaces shear strength by direct shear and simple shear tests

  • Vieira, Castorina Silva;Lopes, Maria de Lurdes;Caldeira, Laura
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.601-618
    • /
    • 2015
  • Soil-reinforcement interaction mechanism is an important issue in the design of geosynthetic reinforced soil structures. This mechanism depends on the soil properties, reinforcement characteristics and interaction between these two elements (soil and reinforcement). In this work the shear strength of sand/geotextile interfaces were characterized through direct and simple shear tests. The direct shear tests were performed on a conventional direct shear device and on a large scale direct shear apparatus. Unreinforced sand and one layer reinforced sand specimens were characterized trough simple shear tests. The interfaces shear strength achieved with the large scale direct shear device were slightly larger than those obtained with the conventional direct shear apparatus. Notwithstanding the differences between the shear strength characterization through simple shear and direct shear tests, it was concluded that the shear strength of one layer reinforced sand is similar to the sand/geotextile interface direct shear strength.

Strain localization and failure load predictions of geosynthetic reinforced soil structures

  • Alsaleh, Mustafa;Kitsabunnarat, Akadet;Helwany, Sam
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.235-261
    • /
    • 2009
  • This study illustrates the differences between the elasto-plastic cap model and Lade's model with Cosserat rotation through the analyses of two large-scale geosynthetic-reinforced soil (GRS) retaining wall tests that were brought to failure using a monotonically increasing surcharge pressure. The finite element analyses with Lade's model were able to reasonably simulate the large-scale plane strain laboratory tests. On average, the finite element analyses gave reasonably good agreement with the experimental results in terms of global performances and shear band occurrences. In contrast, the cap model was not able to simulate the development of shear banding in the tests. In both test simulations the cap model predicted failure loads that were substantially less than the measured ones.

Ground improvement using geocells to enhance trafficability in desert soils

  • Kumar, Anand;Singh, Akshay P.;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2019
  • Massive investments are going on to promote and build transportation infrastructure all across the globe with the challenges being more than budgetary. Sandy soils which are predominant in coastal and border areas in India have typical characteristics. The shear strength of such soil is very low which makes it difficult for any kind of geotechnical construction and hence soil stabilization needs to be carried out for such soil conditions. The use of geocells is one of the most economical methods of soil improvement which is used to increase strength and stiffness and reduce the liquefaction potential of the soil. The use of geocells in stabilizing desert sand and results from a series of plate load test on unreinforced soil and geocell reinforced homogenous sand beds are presented in the present study. It also compares the field results using various load class vehicles like heavy load military vehicles on geocell reinforced soils with the experimental results and comes out with the fact that the proposed technique increases the strength and stiffness of sandy soil considerably and provides a solution for preventing settlement and subsidence.

Bearing capacity of geotextile-reinforced sand with varying fine fraction

  • Deb, Kousik;Konai, Sanku
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • Use of geotextile as reinforcement material to improve the weak soil is a popular method these days. Tensile strength of geotextile and the soil-geotextile interaction are the major factors which influence the improvement of the soil. Change in fine content within the sand can change the interface behavior between soil and geotextile. In the present paper, the bearing capacity of unreinforced and geotextile-reinforced sand with different percentages of fines has been studied. A series of model tests have been carried out and the load settlement curves are obtained. The ultimate load carrying capacity of unreinforced and reinforced sand with different percentages of fines is compared. The interface behavior of sand and geotextile with various percentages of fines is also studied. It is observed that sand having around 5% of fine is suitable or permissible for bearing capacity improvement due to the application of geosynthetic reinforcement. The effectiveness of the reinforcement in load carrying capacity improvement decreases due to the addition of excessive amount of fines.

Variation of Pull-out Resistance of Geogrid with Degree of Saturation of Soil

  • Yoo, Chungsik;ALI, TABISH
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • This paper presents the results of experimental investigation on the effect of degree of saturation of soil on the pullout behavior of a geogrid. Different test variables were taken into account while performing the experiment including the soil physical conditions based on water content and external loading applied. The soil used was locally available weathered granite soil. The tests included variations in saturation of about 90%, 80%, 70% and 45% (optimum moisture content). The pullout tests were performed according to ASTM standard D 6706-01. The results indicate that increasing the degree of saturation in the soil decreases the pull-out capacity, which in turn decreases the interface friction angle and interaction coefficient. The decrease in the pullout interface coefficient was observed to be around 12.50% to 33.33% depending on the normal load and degree of saturation of the soil. The test results demonstrated the detrimental effect of increasing the degree of saturation within the reinforce soil on the pullout behavior of reinforcement, thus on the internal stability. The practical inferences of the outcomes are analyzed in detail.

A Study on Interaction Behaviors of Soil-PET Mat installed on Dredged Soils (연약한 준설점토상 매립시 포설된 PET 매트와 지반거동에 관한 연구)

  • Lee Man-Soo;Jee Sung-Hyun;Yang Tae-Seon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Geosynthetic damage has attracted a major attention since the introduction of geotextiles for civil engineering applications. In this study 3 pilot trial embankments were carried out to investigate the behaviours of reinforced embankments over soft cohesive soils and to find the optimum methodology of embankments over soft soils. As the seamed part of polyester mat (PET, tensile strength 15 ton) used in the first full-scale field test was ruptured under progressing rotational slope failure because of unexpectedly rapid construction of embankments, the excessive pore water pressures were measured. On the soil behavior where tension explosion of mat was continued, pore pressure larger than the one caused by embankment height was measured. Especially, at the depth of 5.0 m under the ground pore pressure increased over long term. It was discussed with respect to the height of embankment and heaving behavior of soft soils.