• 제목/요약/키워드: soil-chamber test

검색결과 124건 처리시간 0.022초

실내모형시험을 통한 도로함몰 매커니즘에 대한 기초적 연구 (Basic Study on Mechanism of Cave-in in Road through Laboratory Model Tests)

  • 권기철;김상록;홍석우
    • 한국도로학회논문집
    • /
    • 제18권5호
    • /
    • pp.11-19
    • /
    • 2016
  • PURPOSES : This study identifies the causes and the mechanism of the occurrence of underground cavities. METHODS : A case study on cave-in and a series of model tests with a small soil chamber were conducted. RESULTS : A hypothesis about the mechanism of the cave-in in road was established, and the basic influencing factors on underground cavity expansion were identified. CONCLUSIONS : It was found that the characteristics of shear strength of soil and direction of water flow had a larger influence on cavity formation and expansion than the characteristics of internal erosion. In addition, large cavities suddenly expanded when cavities were caused owing to breakage of buried sewer pipe.

불포화 사질토의 도로함몰 특성에 관한 실험적 연구 (Experimental Study on Road-Subsidence Characteristics in Unsaturated Sandy Soils)

  • 권기철
    • 한국도로학회논문집
    • /
    • 제20권1호
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSES : The purpose of this study is to identify the road-subsidence mechanism in unsaturated sandy soils. METHODS : A series of soil chamber tests were conducted under various conditions. RESULTS : The cavity-expansion characteristics in unsaturated sandy soils due to seepage were affected by the outlet size, seepage intensity, relative density, and fine content. CONCLUSIONS : In unsaturated sandy soils, the cavity-expansion speed was affected by the outlet size, relative density, seepage intensity, and clay content; however, the cavity-expansion shape was very similar. As the outlet size and seepage intensity increased, the cavity-expansion speed increased. As the relative density increased, the cavity-expansion speed increased because of a sudden decrease in shear strength, resulting from the increased saturation (reduction of matric suction). The cavity expanded faster with the increasing clay content, up to a certain threshold. It expanded at a slower rate once it passed the threshold. Finally, it reached a stable state where the cavity did not expand due to seepage.

연약지반상 고속철도 노반 축조시 지오셀 시스템의 효과 (Reinforcement of Soft Soil Subgrade for High-Speed Railroad Using Geocell)

  • 김진만;조삼덕;윤수호;정문경;김영윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.129-141
    • /
    • 1999
  • This paper presents the results of plate load test and dynamic load test performed to evaluate the performance of geocell where it is used to reinforce soft subgrade for high-speed railroad. Efficacy of geocell was observed in increase in bearing capacity of subgrade and reduction of thickness of reinforced sub-ballast. Plate load tests were carried out at four different places with varying foundation soil strength as a function of number of geocell layer, type of filler material, thickness of cover soil, and the presence of non-woven geotextile. Dynamic load tests were performed in a laboratory. The test soil chamber consists of, from the bottom, 50 cm thick clayey soil, one layer of geocell filled with crushed stone, 10 cm thick crushed stone cover, reinforced sub-ballast of varying thickness, 35 cm thick ballast. This configuration was determined based on the results of numerical analysis and plate load tests. For each set of the dynamic load tests, loads were applied more than 80,000 times. One layer of geocell underlying a 10 cm thick cover soil led to an increase in bearing capacity three to four times compared to a crushed stone layer of the same thickness substituted for the geocell and cover soil layer. Given the test conditions, the thickness of reinforced sub-ballast can be reduced by approximately 35 cm with the presence of geocell.

  • PDF

Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands

  • Tran, An Thi Phuong;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.475-483
    • /
    • 2019
  • Vegetation cover plays a vital role in stabilizing the soil structure, thereby contributing to surface erosion control. Surface vegetation acts as a shelterbelt that controls the flow velocity and reduces the kinetic energy of the water near the soil surface, whereas vegetation roots reinforce the soil via the formation of root-particle interactions that reduce particle detachment. In this study, two vegetation-testing trials were conducted. The first trial was held on cool-season turfgrasses seeded in a biopolymer-treated site soil in an open greenhouse. At the end of the test, the most suitable grass type was suggested for the second vegetation test, which was conducted in an environmental control chamber. In the second test, biopolymers, namely, starch and xanthan gum hydrogels (pure starch, pure xanthan gum, and xanthan gum-starch mixtures), were tested as soil conditioners for improving the water-holding capacity and vegetation growth in sandy soils. The results support the possibility that biopolymer treatments may enhance the survival rate of vegetation under severe drought environments, which could be applicable for soil stabilization in arid and semiarid regions.

1g shaking table tests on residual soils in Malaysia through different model setups

  • Lim, Jun X.;Lee, Min L.;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.547-558
    • /
    • 2018
  • Studies of soil dynamic properties in Malaysia are still very limited. This study aims to investigate the dynamic properties of two selected tropical residual soils (i.e., Sandy Clay and Sandy Silt) and a sand mining trail (Silty Sand) in Peninsular Malaysia using 1g shaking table test. The use of 1g shaking table test for soil dynamic testing is often constrained to large strain level and small confining pressure only. Three new experimental setups, namely large laminar shear box test (LLSBT), small chamber test with positive air pressure (SCT), and small sample test with suction (SSTS) are attempted with the aims of these experimental setups are capable of evaluating the dynamic properties of soils covering a wider range of shear strain and confining pressure. The details of each experimental setup are described explicitly in this paper. Experimental results show that the combined use of the LLSBT and SCT is capable of rendering soil dynamic properties covering a strain range of 0.017%-1.48% under confining pressures of 5-100 kPa. The studied tropical residual soils in Malaysia behaved neither as pure sand nor clay, but show a relatively good agreement with the dynamic properties of residual soils in Singapore. Effects of confining pressure and plasticity index on the studied tropical residual soils are found to be insignificant in this particular study.

CRPT를 이용한 연약지반 협재층 탐지 (Detection of thin-layered soil using CRPT in soft soil)

  • 윤형구;김준한;김래현;최용규;이종섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.117-125
    • /
    • 2008
  • The detection of thin-layered soil is important in soft soils to evaluate the soil behavior. The smaller diameter cone penetrometer have been commonly used to detect the layer with increasing sensitivity. The objective of this study is to detect the thin-layered soil using cone resistance and electrical resistance. The cone resistivity penetration test (CRPT) is developed to evaluate the cone tip resistance and electrical resistance at the tip. The CRPT is a micro-cone which has a $0.78cm^2$ in projected area. The application test is conducted in a laboratory large-scale consolidometer (calibration chamber). The kaolinite, sand and water are mixed to make the specimen at the liquid limit of 46% using a slurry mixer. It takes two months for the consolidation of the specimen. After consolidation, the CRPT test is carried out. Furthermore the standard CPT results are compared with the electrical resistance measured at the tip in the field. This study suggests that the CRPT may be a useful tool for detecting thin-layers in soft soils.

  • PDF

Design of a piezovibrocone and calibration chamber

  • Samui, Pijush;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • 제2권3호
    • /
    • pp.177-190
    • /
    • 2010
  • This paper presents the details of indigenous development of the piezovibrocone and calibration chamber. The developed cone has a cylindrical friction sleeve of $150cm^2$ surface area, capped with a $60^{\circ}$ apex angle conical tip of $15cm^2$ cross sectional area. It has a hydraulic shaker, coupled to the cone penetrometer with a linear displacement unit. The hydraulic shaker can produce cyclic load in different types of wave forms (sine, Hover sine, triangular, rectangular and external wave) at a range of frequency 1-10 Hz with maximum amplitude of 10 cm. The piezovibrocone can be driven at the standard rate of 2 cm/sec using a loading unit of 10 ton capacity. The calibration chamber is of size $2m{\times}2m{\times}2m$. The sides of the chamber and the top as well as the bottom portions are rigid. It has a provision to apply confining pressure (to a maximum value of $4kg/cm^2$) through the flexible rubber membrane inlined with the side walls of the calibration chamber. The preliminary static as well as dynamic cone penetration tests have been done sand in the calibration chamber. From the experimental results, an attempt has been made to classify the soil based on friction ratio ($f_R$) and the cone tip resistance ($q_c$).

인장시험(引張試驗)에 의한 보강토(補强土)의 거동결정(擧動決定) (Soil-Reinforcement Interaction Determined by Extension Test)

  • 김운영
    • 대한토목학회논문집
    • /
    • 제8권1호
    • /
    • pp.33-40
    • /
    • 1988
  • 흙과 보강재 사이의 거동을 측정하는 수단으로서 hollow cylinder type의 샘플 내에 보강재를 인장방향으로 삽입하여 주위압력을 일정하게 유지한 가운데 축력(軸力)을 감소시키는 소위 삼축인장시험을 실시하였다. 인장특성(引張特性)(extensibility)이 상이(相異)한 3종류의 보강재를 사용한 결과 파괴변형율(failure strain), 최대강도후의 응력강소(loss of post-peak strength), 변형모양(deformation mode) 등이 보강재에 따라 각각 독특하였고, 파괴의 양상은 breakage 또는 pull-out 이 발생하였으며, 보강재단(補强材端)의 고정여부에 따라 보강효과가 영향을 받음이 확인되었다. 따라서 보강토해석 및 설계시 흙 및 보강재 자체의 강도(强度)와 더불어 보강재의 인장특성(引張特性)과 경계조건(境界條件)이 매우 중요한 고려요소임을 알 수 있었다.

  • PDF

무용접 장대강관말뚝 공법의 항타 및 지지력 특성 (Characteristics of Driving Efficiency and Bearing Capacity for Long Steel Pipe Pile Method without Welding)

  • 백규호
    • 한국지반공학회논문집
    • /
    • 제16권1호
    • /
    • pp.235-241
    • /
    • 2000
  • 기존의 장대강관말뚝 공법들은 말뚝의 용접이음이나 관내토의 제거 작업으로 인하여 공비와 공기가 증가하고 이들 작업이 진행되는 동안 시간효과에 의하여 말뚝의 관입 저항이 증가하여 타입이 어려워지는 등 각종 비경제적인 문제점들을 갖고 있다. 이러한 문제들을 해결하기 위하여 본 연구에서는 새로운 장대강관말뚝 공법을 제안하였으며, 제안된 공법의 시공성과 경제성을 분석하기 위하여 모형말뚝시험을 행하였다. 시험결과 새로 제안된 장대말뚝공법은 기존 공법에 비해 공기와 공비는 절감되고 지지력은 증가시키는 것으로 나타났다.

  • PDF

모래지반에서 반복수평하중을 받는 항타말뚝의 거동 (Behavior of Laterally Cyclic Loaded Piles Driven into Sand)

  • 백규호;박원우;김영준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.913-922
    • /
    • 2009
  • Fourteen model pile load tests using a calibration chamber and instrumented model pile were preformed to investigate the variation of the behaviors of driven piles in sands with soil and lateral cyclic loading conditions. Results of the model tests showed that the first loading cycle generated more than 70% of the pile head rotation developed for 50 lateral loading cycles. Lateral cyclic loading also made an increase of the ultimate lateral load capacity of piles for $K_0$=0.4 and an decrease for $K_0$ higher than 0.4. Higher portion of the increase or decrease in the ultimate lateral load capacity by lateral cyclic loading was generated for the first loading cycle due to densification of loosening of the soil around the pile by lateral cyclic loading. It was also observed that a two-way cyclic loading caused higher ultimate lateral load capacity of driven piles than a one-way cyclic loading. When the pile was in the ultimate state, the maximum bending moment developed in the pile increased with increasing $K_0$ value of soil and was insensitive to the magnitude and number of lateral cyclic loading.

  • PDF