• Title/Summary/Keyword: soil treatment

Search Result 3,289, Processing Time 0.028 seconds

Elctrokinetic-Fenton 기법 적용시 토질조건과 오염원의 종류에 따른 과산화수소의 주입특성

  • 김정환;김병일;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.30-33
    • /
    • 2002
  • In this study, feasibility of using hydrogen peroxide as a chemical oxidant for in-situ treatment by EK-Fenton technology were investigated. Kaolinite, kaolinite/sand mixture and illitic soil spiked by phenol and phenanathrene were used and variation of electrochemical characteristics were examined by EK-Fenton test. For kaolinite that having low buffer capacity, hydrogen peroxide was injected effectively from anode reservoir. However illitic soil that having relatively higher buffer capacity had low hydrogen peroxide introducing efficiency. The test results showed that Hydrogen ions generated by current increased during the treatment decreased under pH 3 in the most of kaolinite specimen. Therefore, stabilized hydrogen oxide was injected more effectively in the kaolinite specimen. This study suggests that efficiency of hydrogen peroxide injection by EK-Fenton thechnoloty is dependent of variation of pH in the soil

  • PDF

Effects of Organic Matters Decomposed by Microbial Activity on Yield of Leaf Lettuce Under Protected Cultivation (미생물 유기질비료의 시용이 상추의 수량에 미치는 영향)

  • 김경제;김석균
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.1
    • /
    • pp.131-137
    • /
    • 1999
  • This study was conducted to investigate the effects of microbial fertilizers on the yields of Leaf lettuce, chemical components of soil, and the microbial floras. Six micriobial fertilizers, MPK+Husk+Palma, Husk+Palma, MPK+Compost, Compost, Bio livestock cattle system(BLCS) cattle dropping, and Tomi, were used. All of the microbial fertilizers were tend to increase yields of Leaf lettuce, especially MPK+Husk+Palma treatment was most effective. In a chemical components of soil, concentrations of K, Mg were increased with Tomi treatment, however, the other concentrations of soil chemical components were not different. In a microbial floras of soil, Tomi, Husk+Palma, and MPK+Husk+Palma treated plots increased in numbers of total bacteria and bacillus. Tomi treated plot increased in numbers of actinomycetes and fungi, also. The other microbial floras of soil were not different, however. The microbial fertilizers may affect the useful microbial floras, therefore, it would be increase yield of Leaf lettuce treated with them.

  • PDF

Steel Pile Corrosion in Potential Acid Sulfate Soil (잠재성 특이산성토중 강관말뚝의 부식)

  • Lee, Seung-Heon;Park, Mi-Hyeun;Yoon, Kyung-Sup
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

유류오염토양 정화를 위한 생물활성 촉진방법의 평가

  • Kim Jong-Ha;Kim Tae-Seung;Yun Jeong-Gi;Kim Hyeok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.211-214
    • /
    • 2005
  • Bench-scale experiments conducted to evaluation of the biostimulation and bioaugmentation techniques in treatment of petroleum contaminated soil. The soil bioreactors were operated for a 52 day-period. PDB population in the stimulated treatments increased from $7{\times}10^4MPN/g$ soil in zero day to $7{\times}10^7MPN/g$ soil after 23 days. However, despite the initially higher PDB population in the augmented treatments, it was decreased PDB population with respect to time. The average biodegradation rate in the augmented treatments were greater than of the stimulated treatment in the early stage, but the average biodegradation rate in the latter stage were calculated $3{\sim}5mg/kg-day$ in the augmented treatments and 10.38mg/kg-day in the stimulated treatments. The TPH removal rate was calculated $20{\sim}30%$ in the augmented treatments and 53% in the stimulated treatments.

  • PDF

Effects of Soil Remediation Methods on the Biological Properties of Soils (오염토양 정화공법이 토양의 생물학적 특성에 미치는 영향)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.73-81
    • /
    • 2013
  • Various remediation methods have been applied to clean soils contaminated with pollutants. They remove contaminants from the soils by utilizing physicochemical, biological, and thermal processes and can satisfy soil remediation standards within a limited time; however, they also have an effect on the biological functions of soils by changing soil properties. In this study, changes of the biological properties of soils before and after treatment with three frequently used remediation methods-soil washing, land farming, and thermal desorption-were monitored to investigate the effects of remediation methods on soil biological functions. Total microbial number and soil enzyme activities, germination rate and growth of Brassica juncea, biomass change of Eisenia andrei were examined the effects on soil microorganisms, plant, and soil organisms, respectively. After soil washing, the germination rate of Brassica juncea increased but the above-ground growth and total microbial number decreased. Dehydrogenase activity, germination rate and above-ground growth increased in both land farming and thermal desorption treated soil. Although the growth of Eisenia andrei in thermal desorption treated soil was higher than any other treatment, it was still lower than that in non-contaminated soil. These results show that the remediation processes used to clean contaminated soil also affect soil biological functions. To utilize the cleaned soil for healthy and more value-added purposes, soil improvement and process development are needed.

동전기 정화 처리 효율 향상과 후처리 겸용 전극부(EPE) 개발

  • 김강호;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.275-278
    • /
    • 2002
  • In this study, to increase removal efficiency of traditional electrokinetic treatment and to reduce contaminant load of wastewater that discharged through cathode compartment, enhanced electrode compartments were investigated. Hydroxide precipitation near the cathode electrode that encounter during traditional electrokinetic treatment were prevented by enhanced electrokinetic remediation test with newly invented electrode compartment. And heavy metal concentration in wastewater showed 0 ppm thus, additive post-treatment cost were not needed.

  • PDF

Utilization of Biosolid for Enhanced Heavy Metal Removal and Biomass Production in Contaminated Soils (중금속 오염 토양 복원 및 바이오메스 생산량 증대를 위한 biosolid 활용)

  • Kim, Kwon-Rae;Naidu, Ravi;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.558-564
    • /
    • 2010
  • Cleaning up the landfill soil by phytoremediation in association with biomass production and utilization of biosolid as a soil amendment will be an attractive green technology. In order to examine this integrated green technology, in the current study of pot trial, heavy metal removal rate and biomass production were determined following cultivation of three different plant species in the landfill soil incorporated with biosolid at two different levels (25 ton $ha^{-1}$ and 50 ton $ha^{-1}$). Among the three plant species including Indian mustard (Brassica juncea), giant sunflower (Helianthus giganteus. L), and giant cane (Arundo donax. L), sunflower appeared to produce the largest biomass yield (19.2 ton $ha^{-1}$) and the produced amounts were magnificently increased with biosolid treatment compared to the control (no biosoild treatment). The increased production associated with biosolid treatment was common for other plant species and this was attributed to the biosolid originated nutrients as well as the improved soil physical properties due to the organic matter from biosolid. The elevated heavy metals in soil which was originated from the incorporated biosolid were Cu and Zn. Based on the phytoavailable amount of heavy metals from biosolid, the removed amount by plant shoots were 95% and 165% for Cu and Zn, respectively, when sunflower was grown. This indicated that mitigation of heavy metal accumulation in soils achieved by the removal of metal through sunflower cultivation enables the successive treatment of biosolid to soils. Moreover, sunflower showed heavy metal stabilization ability in the rhizosphere resulting in alleviation of metal release to ground water.

Effect of Bacillus subtilis S37-2 on Microorganisms in Soil and Growth of Lettuce (Lactuca sativa)

  • Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Seuk, Su-Won;Song, Jae-Kyeong;Kwon, Jang-Sik;Kim, Min-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.621-626
    • /
    • 2016
  • The present study evaluated the variations in soil microbial population of controlled horticultural land used for lettuce (Lactuca sativa) cultivation by their fatty acid methyl ester and chemical properties. We utilized four treatment groups, no treatment (NT), culture medium (CM), Bacillus subtilis S37-2 (KACC 91281P) ${\times}10^6CFU\;mL^{-1}$ (BS1), and Bacillus subtilis $S37-2{\times}10^7CFU\;mL^{-1}$ (BS2) and analyzed these variations throughout the before treatment and harvesting stage. The chemical properties such as pH, organic matter, available phosphate, and electrical conductivity in soils before treatment and harvesting stage showed no significant difference among the treatments. Total numbers of bacteria and microbial biomass C in soil treated with BS1 were larger than those of NT, CM, and BS2, whereas total number of fungi at the harvesting stage was significantly lower in the BS1 soil than in the NT and CM soils (P < 0.05). On basis of leaf length, leaf width, leaf number and leaf weight, the growth characteristics lettuce on the soil treated with BS1 and BS2 was faster than those of NT and CM soils. Yield of lettuce with treated BS1 and BS2 were 35% and 29% more than that of NT, respectively.

Analysis of Early Revegetation Effect in Rock Slopes using Vegetation-Plant (식생플랜트를 이용한 암반비탈면의 조기녹화 효과분석)

  • Ma, Ho-Seop;Kang, Won-Seok;Park, Jin-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.81-89
    • /
    • 2010
  • This study was conducted to evaluate the effects of early revegetation by analyzing the characteristics of germination and growth of Chrysanthemum zawadskii using vegetation-plant in rock slopes. After making up a growing basis of approximately 20-cm depth and 10-cm diameter by using a boring machine, the surface of rock slopes was planted with vegetation-plant. The number of germinating populations by soil media was 41 in H.s, 4 in T.s, 3 in M.s, and 0 in M.g.s. The germination rate (%) by soil media was 20.0% in H.s, 3.3% in T.s, 2.5% in M.s and 0% in M.g.s. In monthly changes of growth rate, the aspect was northwest direction, the soil media was H.s, and the treatment was microorganism plot. The main factors affecting survivorship and growth of population were soil media and treatment plot. The interaction between each factor had a good effects in bearing x treatment plot, soil media x treatment plot. but, it is recommended that the mulching of vegetation plant is highly needed to help the germination of seed and growth of vegetation because of loss of seed and soil media occurred due to rainfall. Therefore, The result suggests that the revegetation technique using boring in rock slope was very efficient in respect of the early revegetation and the landscape.

Effects of Soil Amendments Application on Growth of Rice Cultivated in Soils Polluted with Heavy Metal(loid) and on the As and Cd Content in Brown Rice

  • Yoo, Ji-Hyock;Park, Sang-Won;Kim, Won-Il;Lee, Sang-Beom;Oh, Kyeong-Seok;Moon, Byeong-Churl;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.663-673
    • /
    • 2017
  • Heavy metal(loid) contamination of rice is the main issue in abandoned metal mine area with regard to food safety. A field study was conducted in mine area to see if soil amendments treatment including calcium superphosphate, sulfur, steel slag and S-containing fertilizer could reduce As and/or Cd content in rice grain and increase the growth of rice. The As content in brown rice reduced to 60% compared to the control only in $7.0Mg\;ha^{-1}$ of steel slag treatment. Cd reduction in rice was thought to be not the effect of amendments but the result from the difference in growth and development of rice plant and this could be ascribed to low soil Cd availability to rice plant. Compared with control, increased rice yield of cultivar Hwanggeumnuri was 1.3~2.2 and $1.5Mg\;ha^{-1}$ in calcium super phosphate and S-containing fertilizer treatment, respectively and the trend was also observed in cultivar Ungwang. However, steel slag treatment reduced the Ungwang yield by $0.4{\sim}0.9Mg\;ha^{-1}$. Future work will be needed to establish the agricultural measure with which secure the safety and yield of rice simultaneously.