• Title/Summary/Keyword: soil treatment

Search Result 3,289, Processing Time 0.031 seconds

Uptake of Fe and Mn in Red Pepper and Tomato Plants under Different Soil Conditions (토양조건에 따른 고추와 토마토의 철 및 망간 흡수특성)

  • Lee, Ju-Young;Sung, Jwa-Kyung;Park, Jae-Hong;Lee, Su-Yeon;Park, Seong-Yong;Lee, Ye-Jin;Kim, Tae-Wan;Song, Beom-Heon;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.207-213
    • /
    • 2009
  • This experiment was performed to understand the relationship between uptake of Fe and Mn by plants, red pepper and tomato, and soil physico-chemical properties under different soil conditions at an environmentally controlled chamber in NAAS(National Academy of Agricultural Science) in 2008. After the dipping for 3 days, four treatments, dipping, dipping+aeration, drainage, drainage+aeration, were set up to investigate the changes in soil redox potential and moisture content. Drainage+aeration changed soil to the oxidation condition from 72 hrs of treatment, and soil moisture content was immediately reduced after treatment. Uptake of Fe and Mn of red pepper was investigated with two treatments, soil only and the mixed[soil(50%) : bed soil(35%) : bark(15%)]. Red pepper leaves taken at 30 days after treatment absorbed excessively Mn from the treatment of soil only and the mixed, and thus uptake of iron was strongly reduced. Also, uptake pattern of Fe and Mn of tomato was examined with four treatment, soil only, soil(50%) + rice straw(50%), soil(50%) + compost(50%) and soil + aeration. Contents of Fe and Mn in tomato leaves was measured at 60 days after treatment. Fe content was the greatest in soil(50%) + compost(50%) whereas Mn content was the highest in soil only. As a result of this experiment, plant growth was stronger influenced by soil moisture content than redox potential or porosity, and the oxidation status of soil was likely to promote that plant predominantly absorbed Mn from soil and thus resulted in Fe deficiency.

Adaptation of Betula schmidtii Seedling in Coal-mine Field with Different Sewage Sludge Treatment Methods

  • Han, Sim-Hee;Lee, Jae-Cheon;Oh, Chang-Young;Kim, Pan-Gi
    • The Korean Journal of Ecology
    • /
    • v.28 no.4
    • /
    • pp.189-192
    • /
    • 2005
  • We tested the field adaptation of Betula schmidtii on the abandoned coal-mine soil with sludge amendment methods for promoting physiological activity of B. schmidtii seedlings under several environmental stress. Sewage sludges were amended to coal-mine soil with B. schmidtii seedlings which grown in the mixture of artificial soil and composted sludge soil before transplanting (before-fertilized treatment, BF) and fertilized with composted sludge after transplanting (after-fertilized treatment, AF). The percent of establishment of seedlings for AF (80.7%) was lower than that for BF (92.7%). Nitrate reductase activity and photosynthetic pigment content were higher in AF than in BF, but malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were lower in AF than in BF These results represent that after-fertilized seedlings increase resistance against physiological stress at field condition using nitrogen source of composted sludge. On the contrary, before-fertilized seedlings were susceptible to environmental stress on abandoned coal-mine soil by exhausting of nitrogen source from composted sludge.

The Effect of Animal Menure on the Soil Characters and Productivity of Grassland (가축분이 초지의 토양과 생산성에 미치는 영향)

  • Chung, Chan;Jeon, Byong-Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 1989
  • This experiment was conducted to investigate the effect of animal stable manure on the dry matter yield, botanical composition, crude protein content rates, in vitro digestibility and soil characters with treatments, which were divided into cattle manure, swine manure and poultly excreta of 375 and 750kg/lOa, respectively. The results obtained were summarized as follows: 1. A comparison made on the grass yield for one year period following the termination of the experiment did not indicate any signification in the yield of dry matter difference between chemical fertilizer treatment and 750kg/10a of organic manure. 2. Botanical composition was not shown an increasing of weed or bare land in organic manure of 375 and 750kg/lOa application during the whole period of growth. 3. Crude protein content and in vitro digestibility were shown an increasing tendency according to the increase of organic manure application. 4. Crude protein yield in organic manure of 750kg/10a was not a large difference compared with chemical fertilizer treatment. 5. Soil composition of organic manure had higher than the soil composition of chemical fertilizer treatment, which was shown an increasing tendency according to the increase of organic manure. 6. Therefore, It was suggested that the effect of organic manure on dry matter yield, botanical composition was similar to chemical fertilizer treatment and soil composition of organic manure had higher organic matter, available phosphate, potassium and C.E.C than the soil composition of chemical fertilizer treatment.

  • PDF

Effect of Mixed Treatment of Nitrogen Fertilizer and Zeolite on Soil Chemical Properties and Growth of Hot Pepper

  • Park, Jun-Hong;Park, Sang-Jo;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • Urea has been the most useful N-source, due to lower cost per unit of N. But nitrogen use efficiency of urea may be reduced because of losses from agricultural system by volatilization of ammonia to atmosphere. This study was conducted to evaluate the nitrogen efficiency and growth of hot pepper (Capsicum annuum L.) by mixed treatment with nitrogen and zeolite. They were treated with N $161kg\;ha^{-1}$, N $230kg\;ha^{-1}$, nitrogenzeolite mixture (NZM) $161kg\;ha^{-1}$, NZM $230kg\;ha^{-1}$ and N $0kg\;ha^{-1}$, respectively. In the soil chemical properties after experiment, soil pH decreased but available $P_2O_5$, EC and total nitrogen increased in nitrogen-zeolite mixture treatment. $NO_3-N$ content in the soil showed the highest level in NZM $230kg\;ha^{-1}$. NZM $161kg\;ha^{-1}$ treatment increased growth and yield of hot pepper compared to urea alone. Nitrogen utilization efficiency of hot pepper plant was 47.15% at the treatment of NZM $161kg\;ha^{-1}$, while 36.74% at N $230kg\;ha^{-1}$. These results showed that application of mixture of nitrogen and zeolite had positive influence to improve the efficiency of nitrogen utilization and increase of red pepper yield.

Production of Pellet Fertilizer from the Sludge of Thermophilic Aerobic Oxidation System End Its Effects on the Growth of Chinese cabbage and Soil Properties (고온 호기성 산화 시스템의 슬러지로부터 펠렛 비료의 생산과 Chinese cabbage의 생육 및 토양 특성에 대한 영향)

  • Lee Won Il;Hirotada Tsujii;Lee Myung Gyu
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.101-110
    • /
    • 2004
  • A solid of Thermophilic Aerobic Oxidation(TAO) System was mixed with sawdust or a rice husks. After fermentation was finished, molding machine and a dryer were used, and pellet fertilizer was produced. The fertilizing experiment was carried out as five pieces by Bed soil, TAO solid(TAO-S), TAO pellet fertilizer(TAO-PF), Chemical fertilizer(NPK) and Control(no fertilizer). Growth rate of the Chinese cabbage by each treatment was examined. Analysis of microbe and soil characteristic before and after crop experiment were carried out. When the moisture contents of TAO-PF were $18\%$ and $25\%$, the occurrence rate of microbes for the storage time was increased to $80\%$ and $100\%$ respectively. However, in the $12\%$ of water content treatment was not increased microbes. The concentration of soil bacteria in TAO-PF and TAO-S for 15 day after treatment was $1.5\times10^7\~8.0\times10^7$ CFU/ml, and the concentration of bacteria for 50 day was increased to $6.3\times10^7$ and $8.3\times10^7$ CFU/ml. However, Fungus decreased. The concentration of Actinomycetes was increased in TAO solid, Bed soil and TAO-PF treatment. The TAO-S and TAO-PF treatment were normal to compare to the NPK treatment. In this experiment the height and width of the Chinese cabbage were 22.3 cm, 16.8 cm in Bed soil and 28.8 cm, 21.3 cm in TAO solid. The leaf number of TAO-S, TAO-PF and NPK treatment were similar to 39.8, 38.3, 40.3 sheet. As the result, the TAO-PF knew that use was possible with fertilizer.

  • PDF

Removal of Semi-volatile Soil Organic Contaminants with Microwave and Additives (극초단파(마이크로파)와 첨가제를 이용한 오염토양 내 준휘발성 유기오염물질 제거)

  • Jeong, Sangjo;Choi, Hyungjin
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2013
  • To improve the energy efficiency of conventional thermal treatment, soil remediation with microwave has been studied. In this study, the remediation efficiency of contaminated soil with semi-volatile organic contaminants were evaluated with microwave oven and several additives such as water, formic acid, iron powder, sodium hydroxide (NaOH) solution, and activated carbon. For the experiment, loamy sand and sandy loam collected from Imjin river flood plain were intentionally contaminated with hexachlorobenzene and phenanthrene, respectively. The contaminated soils were treated with microwave facility and the mass removals of organic contaminants from soils were evaluated. Among additives that were added to increase the remediation efficiency, activated carbon and NaOH solution were more effective than water, iron powder, and formic acid. When 10 g of hexachlorobenzene (142.4 mg/kg-soil) or phenanthrene (2,138.8 mg/kg-soil) contaminated soil that mixed with 0.5 g iron powder, 0.5 g activated carbon and 1 ml 6.25 M NaOH solution were treated with microwave for 3 minutes, more than 95% of contaminants were removed. The degradation of hexachlorobenzene during microwave treatments with additives was confirmed by the detection of pentachlorobenzene and tetrachlorobenzene. Naphthalene and phenol were also detected as degradation products of phenanthrene during microwave treatment with additives. The results showed that adding a suitable amount of additives for microwave treatments fairly increased the efficiency of removing semi-volatile soil organic contaminants.

A Simple and Effective Purification Method for Removal of U(VI) from Soil-Flushing Effluent Using Precipitation: Distillation Process for Clearance

  • Hyun-Kyu Lee;Ilgook Kim;In-Ho Yoon;Wooshin Park;Seeun Chang;Hongrae Jeon;Sungbin Park
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • Background: The purpose of this study is to purify uranium (U[VI])-contaminated soil-flushing effluent using the precipitation-distillation process for clearance. Precipitation and distillation are commonly used techniques for water treatment. We propose using a combination of these methods for the simple and effective removal of U(VI) ions from soil-flushing effluents. In addition, the U concentration (Bq/g) of solid waste generated in the proposed treatment process was analyzed to confirm whether it satisfies the clearance level. Materials and Methods: Uranium-contaminated soil was decontaminated by soil-flushing using 0.5 M sulfuric acid. The soil-flushing effluent was treated with sodium hydroxide powder to precipitate U(VI) ions, and the remaining U(VI) ions were removed by phosphate addition. The effluent from which U(VI) ions were removed was distilled for reuse as a soil-flushing eluent. Results and Discussion: The purification method using the precipitation-distillation process proposed in this study effectively removes U(VI) ions from U-contaminated soil-flushing effluent. In addition, most of the solid waste generated in the purification process satisfied the clearance level. Conclusion: The proposed purification process is considered to have potential as a soil-flushing effluent treatment method to reduce the amount of radioactive waste generated.

A Study on the Physical and Chemical Characteristics of the Constructed Wetland Soil for Sewage Treatment (오수처리용 인공습지내 토양의 이화학적 특성조사)

  • Yoon, Chun-Gyeong;Kwun, Tae-Young;Woo, Sun-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.5 no.2 s.10
    • /
    • pp.24-29
    • /
    • 1999
  • The soil from constructed wetland system for sewage treatment was analyzed to examine physical and chemical characteristics. Clogging and lowered permeability were the physical matters of concern, and nutrient and salt accumulation were the chemical matters of concern. However, the soil properties of the constructed wetland system after 3 year operation demonstrated no degradation and still the soil works almost same as the initial stage. Encouragingly, no sludge accumulation was observed inside the system. Therefore, it implies that the wetland sewage treatment system can work continuously as long as it is operated and managed properly not to cause excessive pollutant loading.

  • PDF

Anaerobic Degradation of Petroleum Hydrocarbons in Soil by Application of a Digestion Sludge (소화슬러지를 이용한 토양 내 석유계 탄화수소의 혐기성 분해)

  • Lee, Tae-Ho;Byun, Im-Gyu;Park, Jeung-Jin;Park, Hyun-Chul;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.938-943
    • /
    • 2007
  • Anaerobic degradation of petroleum hydrocarbons in a soil artificially contaminated with 10,000 mg/kg soil of diesel fuel was tested by adding an anaerobic sludge taken from a sludge digestion tank. Treatments of soil(50 g) with 15 mL/kg soil and 30 mL/kg soil of the digestion sludge(2,000 mg/L of vss(volatile suspended solids)) showed 37.2% and 58.0% of total petroleum hydrocarbons(TPH) removal during 90 days incubation, respectively. In evaluation of several anaerobic conditions including nitrate reducing, sulfate reducing, methanogenic, and mixed electron accepters condition, treatments with the digested sludge showed significant degradation of diesel fuel under all anaerobic conditions compare to a control treatment of soil without the sludge and a treatment of autoclaved soil treatment with autoclaved digestion sludge. The rate of diesel fuel degradation was the highest in the treatment with the sludge and mixed electron accepters (75% removal of TPH) for 120 days incubation followed in order by sulfate reducing, nitrate reducing, methanogenic condition as 67%, 53%, 43%, respectively. However, the removal rate of non-biodegradable isoprenoid was the highest in the sulfate reducing condition. These results suggest that anaerobic degradation of diesel fuel in soil with digested sludge is effective for practical remediation of soil contaminated with petroleum hydrocarbons.

Effect of Plant-Growth-Promoting-Bacterial Inoculation on the Growth and Yield of Red Pepper(Capsicum annuum L.) with Different Soil Electrical Conductivity Level (염류수준별 고추 생육과 수량에 미치는 식물생육보진미생물(植物生育保進微生物) 접종효과)

  • Lee, Young-Han;Yang, Min-Suk;Yun, Han-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.396-402
    • /
    • 1996
  • This study was conducted to determine the effect of treatment with the plant-growth-promoting bacteria on the growth and yield of red pepper(Capsicum annuum L.) with different soil electrical conductivity(EC) levels. The mixed liquid culture was done pseudomonas P and saboraud dextrose medium. The isolated bacteria(IB) were inoculated by spray of 3.7ml at 1/2000a pot filled with different soil electrical conductivity level(2.9, 8.6, 11.5dS/m) every week, respectively, with mixed liquid culture (Pseudomonas P+Sabouraud dextrose) of eight strains. The plant height of red pepper with IBs treatment in different soil EC levels showed better growth than IBs nontreatment in the order of the 2.9>8.6>11.5 dS/m. The yield of pepper with IBs treatment in different soil EC level was higher in 13% than IBs nontreatment and chemical properties($P_2O_5$, K, Ca, Mg) of the soil after harvest in IBs treatment were slightly increased, while organic matter and EC of IBs treatment were slightly decreased than those of IBs nontreatment. Moisture content of the soil after the harvesting with IBs treatment was slightly increased than IBs nontreatment.

  • PDF