DOI QR코드

DOI QR Code

A Simple and Effective Purification Method for Removal of U(VI) from Soil-Flushing Effluent Using Precipitation: Distillation Process for Clearance

  • Hyun-Kyu Lee (Radwaste Management Center, Korea Atomic Energy Research Institute) ;
  • Ilgook Kim (Decommissioning Technology Research Division, Korea Atomic Energy Research Institute) ;
  • In-Ho Yoon (Decommissioning Technology Research Division, Korea Atomic Energy Research Institute) ;
  • Wooshin Park (Radwaste Management Center, Korea Atomic Energy Research Institute) ;
  • Seeun Chang (Radwaste Management Center, Korea Atomic Energy Research Institute) ;
  • Hongrae Jeon (Radwaste Management Center, Korea Atomic Energy Research Institute) ;
  • Sungbin Park (Radwaste Management Center, Korea Atomic Energy Research Institute)
  • Received : 2022.05.04
  • Accepted : 2022.11.17
  • Published : 2023.06.30

Abstract

Background: The purpose of this study is to purify uranium (U[VI])-contaminated soil-flushing effluent using the precipitation-distillation process for clearance. Precipitation and distillation are commonly used techniques for water treatment. We propose using a combination of these methods for the simple and effective removal of U(VI) ions from soil-flushing effluents. In addition, the U concentration (Bq/g) of solid waste generated in the proposed treatment process was analyzed to confirm whether it satisfies the clearance level. Materials and Methods: Uranium-contaminated soil was decontaminated by soil-flushing using 0.5 M sulfuric acid. The soil-flushing effluent was treated with sodium hydroxide powder to precipitate U(VI) ions, and the remaining U(VI) ions were removed by phosphate addition. The effluent from which U(VI) ions were removed was distilled for reuse as a soil-flushing eluent. Results and Discussion: The purification method using the precipitation-distillation process proposed in this study effectively removes U(VI) ions from U-contaminated soil-flushing effluent. In addition, most of the solid waste generated in the purification process satisfied the clearance level. Conclusion: The proposed purification process is considered to have potential as a soil-flushing effluent treatment method to reduce the amount of radioactive waste generated.

Keywords

Acknowledgement

This work was supported by a research grant from the Korea Atomic Energy Research Institute (KAERI) (Grant No. 521220-22, South Korea).

References

  1. Ho SS, Leong AD, Looi J, Chen L, Pang N, Tandoc E Jr. Science literacy or value predisposition? A meta-analysis of factors predicting public perceptions of benefits, risks, and acceptance of nuclear energy. Environ Commun. 2019;13(4):457-471. https://doi.org/10.1080/17524032.2017.1394891
  2. Zinkle SJ, Was G. Materials challenges in nuclear energy. Acta Mater. 2013;61(3):735-758.
  3. Mathew MD. Nuclear energy: a pathway towards mitigation of global warming. Prog Nucl Energy. 2022;143:104080.
  4. Muellner N, Arnold N, Gufler K, Kromp W, Renneberg W, Liebert W. Nuclear energy: the solution to climate change? Energy Policy. 2021;155:112363.
  5. Katengeza EW. A brief scrutiny of Malawi's policy on nuclear power. J Radiat Prot Res. 2020;45(4):147-153. https://doi.org/10.14407/jrpr.2020.45.4.147
  6. Shi S, Tang X, Yang Y, Liu Z. Biological effects of uranium in water, soil and rice in uranium deposits in southern China. J Radioanal Nucl Chem. 2021;328(2):507-517. https://doi.org/10.1007/s10967-021-07689-w
  7. Wang S, Ran Y, Lu B, Li J, Kuang H, Gong L, et al. A review of uranium-induced reproductive toxicity. Biol Trace Elem Res. 2020;196(1):204-213. https://doi.org/10.1007/s12011-019-01920-2
  8. Thapa R, Rahmani A, Turhanen P, Taskinen A, Nissinen T, Neitola R, et al. Recovery of uranium with bisphosphonate modified mesoporous silicon. Sep Purif Technol. 2021;272:118913.
  9. Kim IG, Kim SS, Kim GN, Han GS, Choi JW. Reduction of radioactive waste from remediation of uranium-contaminated soil. Nucl Eng Technol. 2016;48(3):840-846. https://doi.org/10.1016/j.net.2016.01.017
  10. Kim SS, Han GS, Kim GN, Koo DS, Kim IG, Choi JW. Advanced remediation of uranium-contaminated soil. J Environ Radioact. 2016;164:239-244. https://doi.org/10.1016/j.jenvrad.2016.08.005
  11. Chae S, Park S, Park J, Min S, Kim J, Lee J. An external dose assessment of worker during RadWaste treatment facility decommissioning. J Radiat Prot Res. 2020;45(2):81-87. https://doi.org/10.14407/jrpr.2020.45.2.81
  12. Feng W, Zhang S, Zhong Q, Wang G, Pan X, Xu X, et al. Soil washing remediation of heavy metal from contaminated soil with EDTMP and PAA: properties, optimization, and risk assessment. J Hazard Mater. 2020;381:120997.
  13. Tran HT, Lin C, Hoang HG, Bui XT, Le VG, Vu CT. Soil washing for the remediation of dioxin-contaminated soil: a review. J Hazard Mater. 2022;421:126767.
  14. Senevirathna STMLD, Mahinroosta R, Li M, KrishnaPillai K. In situ soil flushing to remediate confined soil contaminated with PFOS- an innovative solution for emerging environmental issue. Chemosphere. 2021;262:127606.
  15. Effendi AJ, Ramadan BS, Helmy Q. Enhanced remediation of hydrocarbons contaminated soil using electrokinetic soil flushing: landfarming processes. Bioresour Technol Rep. 2022;17:100959.
  16. Wen D, Fu R, Li Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: a review. J Hazard Mater. 2021;401:123345.
  17. Yoon IH, Park CW, Kim I, Yang HM, Kim SM, Kim JH. Characteristic and remediation of radioactive soil in nuclear facility sites: a critical review. Environ Sci Pollut Res Int. 2021;28(48):67990-68005. https://doi.org/10.1007/s11356-021-16782-2
  18. Gusiatin ZM, Kulikowska D, Klik B. New-generation washing agents in remediation of metal-polluted soils and methods for washing effluent treatment: a review. Int J Environ Res Public Health. 2020;17(17):6220.
  19. Gusiatin ZM, Kaal J, Wasilewska A, Kumpiene J, Radziemska M. Short-term soil flushing with tannic acid and its effect on metal mobilization and selected properties of calcareous soil. Int J Environ Res Public Health. 2021;18(11):5698.
  20. Saeedi M, Li LY, Grace JR. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from natural soil by combined non-ionic surfactants and EDTA as extracting reagents: Laboratory column tests. J Environ Manage. 2019;248:109258.
  21. Wu J, Wang T, Wang J, Zhang Y, Pan WP. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: enhanced the ion exchange and precipitation capacity. Sci Total Environ. 2021;754:142150.
  22. Qasem NAA, Mohammed RH, Lawal DU. Removal of heavy metal ions from wastewater: a comprehensive and critical review. NPJ Clean Water. 2021;4(1):36.
  23. Fedje KK, Stromvall AM. Enhanced soil washing with copper recovery using chemical precipitation. J Environ Manage. 2019;236:68-74. https://doi.org/10.1016/j.jenvman.2019.01.098
  24. Pohl A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut. 2020;231(10):503.
  25. Chang S, Lee HK, Kang HB, Kim TJ, Park S, Jeon H. Decontamination of uranium-contaminated soil by acid washing with uranium recovery. Water Air Soil Pollut. 2021;232(10):415.
  26. International Atomic Energy Agency. IAEA Safety Standards Series No. RS-G-1.7: Application of the concepts of exclusion, exemption and clearance. Vienna, Austria: International Atomic Energy Agency; 2004.
  27. Gang MJ, Han BE, Han PS. Precipitation and adsorption of uranium (4) under various aqueous conditions. Environ Eng Res. 2002;7(3):149-157. https://doi.org/10.4491/eer.2002.7.3.149
  28. Gorman-Lewis D, Burns PC, Fein JB. Review of uranyl mineral solubility measurements. J Chem Thermodyn. 2008;40(3):335-352. https://doi.org/10.1016/j.jct.2007.12.004
  29. Lee HK, Chang S, Park W, Kim TJ, Park S, Jeon H. Effective treatment of uranium-contaminated soil-washing effluent using precipitation/flocculation process for water reuse and solid waste disposal. J Water Process Eng. 2022;48:102890.
  30. Ally MR, Wilson JH, Francis CW. Secondary wastes and treatment of effluents from leaching of uranium from soils. Oak Ridge, TN: Oak Ridge National Lab.; 1993.
  31. Wellman DM, Catalano JG, Icenhower JP, Gamerdinger AP. Synthesis and characterization of sodium meta-autunite, Na [UO2PO4].3H2O. Radiochim Acta. 2005;93(7):393-399. https://doi.org/10.1524/ract.2005.93.7.393
  32. Foster RI, Kim KW, Oh MK, Lee KY. Effective removal of uranium via phosphate addition for the treatment of uranium laden process effluents. Water Res. 2019;158:82-93. https://doi.org/10.1016/j.watres.2019.04.021
  33. Foster RI, Kim KW, Lee K. Uranyl phosphate (MUO2PO4, M=Na+, K+, NH4+) precipitation for uranium sequestering: formation and physicochemical characterisation. J Radioanal Nucl Chem. 2020;324(3):1265-1273. https://doi.org/10.1007/s10967-020-07154-0
  34. Likens G, Butler T. Acid rain: causes, consequences, and recovery in terrestrial, aquatic, and human systems. In: DellaSala D, Goldstein MI. Encyclopedia of the anthropocene. Oxford, UK: Elsevier; 2018. p. 23-31.
  35. Bleam WF. Soil and environmental chemistry. 2nd ed. Amsterdam, Netherlands: Academic Press; 2016.
  36. Morrison KD, Zavarin M, Kersting AB, Begg JD, Mason HE, Balboni E, et al. Influence of uranium concentration and pH on U-phosphate biomineralization by caulobacter OR37. Environ Sci Technol. 2021;55(3):1626-1636. https://doi.org/10.1021/acs.est.0c05437