• 제목/요약/키워드: soil strain

Search Result 1,969, Processing Time 0.027 seconds

Response of a laterally loaded pile group due to cyclic loading in clay

  • Shi, Jiangwei;Zhang, Yuting;Chen, Long;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • In offshore engineering, lateral cyclic loading may induce excessive lateral movement and bending strain in pile foundations. Previous studies mainly focused on deformation mechanisms of single piles due to lateral cyclic loading. In this paper, centrifuge model tests were conducted to investigate the response of a $2{\times}2$ pile group due to lateral cyclic loading in clay. After applying each loading-unloading cycle, the pile group cannot move back to its original location. It implies that residual movement and bending strain are induced in the pile group. This is because cyclic loading induces plastic deformation in the soil surrounding the piles. As the cyclic load increases from 62.5 to 375 kN, the ratio of the residual to the maximum pile head movements varies from 0.30 to 0.84. Moreover, the ratio of the residual to the maximum bending strains induced in the piles is in a range of 0.23 to 0.82. The bending strain induced in the front pile is up to 3.2 times as large as that in the rear pile. Thus, much more protection measures should be applied to the front piles to ensure the serviceability and safety of pile foundations.

Three-dimensional numerical parametric study of tunneling effects on existing pipelines

  • Shi, Jiangwei;Wang, Jinpu;Ji, Xiaojia;Liu, Huaqiang;Lu, Hu
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2022
  • Although pipelines are composed of segmental tubes commonly connected by rubber gasket or push-in joints, current studies mainly simplified pipelines as continuous structures. Effects of joints on three-dimensional deformation mechanisms of existing pipelines due to tunnel excavation are not fully understood. By conducting three-dimensional numerical analyses, effects of pipeline burial depth, tunnel burial depth, volume loss, pipeline stiffness and joint stiffness on bending strain and joint rotation of existing pipelines are explored. By increasing pipeline burial depth or decreasing tunnel cover depth, tunneling-induced pipeline deformations are substantially increased. As tunnel volume loss varies from 0.5% to 3%, the maximum bending strains and joint rotation angles of discontinuous pipelines increase by 1.08 and 9.20 times, respectively. By increasing flexural stiffness of pipe segment, a dramatic increase in the maximum joint rotation angles is observed in discontinuous pipelines. Thus, the safety of existing discontinuous pipelines due to tunnel excavation is controlled by joint rotation rather than bending strain. By increasing joint stiffness ratio from 0.0 (i.e., completely flexible joints) to 1.0 (i.e., continuous pipelines), tunneling-induced maximum pipeline settlements decrease by 22.8%-34.7%. If a jointed pipeline is simplified as a continuous structure, tunneling-induced settlement is thus underestimated, but bending strain is grossly overestimated. Thus, joints should be directly simulated in the analysis of tunnel-soil-pipeline interaction.

Isolation and Characterization of a Restricted Facultatively Methylotrophic Bacterium Methylovorus sp. Strain SS1 (제한통성 메탄올자화세균인 Methylovorus sp. Strain SS1의 분리 및 특성)

  • Seo, Sung A.;Kim, Young M.
    • Korean Journal of Microbiology
    • /
    • v.31 no.3
    • /
    • pp.179-183
    • /
    • 1993
  • A restricted facultatively methanol-oxidizing bacterium, Methylovorus sp. strain SS1, was isolate dfrom soil samples from Kuala Lumpur, Malaysia, through methanol-enrichment culture technique. The isolate was nonmotile Gram-negative rod and did not have complex internal membrane system. The colonies were small, pale-yellow, and raised convex with entire margin. The cell did not produce any spores and capsular materials. The cell was obligately aerobic and exhibited catalase, but no oxidase, activity. Plasmid, carotenoid pigment, and poly-.betha.-hydroxybutyric acid were not found. The guanine plus cytosine content of the DNA was 55%. The isolate was found to grow only on methanol methylamine, or glucose. Growth factors were not required. Cells growing on methanol was found to produce extracellular polysaccharides containing glucose, lactose, and fructose. Growth was optimal (t$_{d}$= 1.7) with 0.5%(v/v) methanol at 40.deg.C and pH 6.5. No Growth was observed at over 60.deg.C. Cell-free extracts of the methanol grown cells exhibited the phenazine methosulfate-linked methanol dehydrogenase activity Methanol was found to be assimilate dthrough the ribulose monophosphate pathway.y.

  • PDF

Creep Deformation Characteristics of Weathered Granite Soil (화강풍화토의 creep 변형특성)

  • Park, Heung-Gyu;Kim, Yong-Ha;Paeng, Woo-Seon;Lee, Hae-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.43-52
    • /
    • 2007
  • This study analyzes the characteristics of creep deformation behavior of weathered granite soils used in road embankments. The creep strain under the unconfined compressive state demonstrated an excellent agreement with the theoretical analysis of the burgers substance. The elastic deformation showed a termination in its characteristics after a long-term period owing to the increase in applied loads. The primary creep strain was 0.0028 and concluded that the deformation completed within $3{\sim}5$ days after applying the loads. Also, the completing time of creep deformation in the embankment soils increased in proportion to the height of embankment soils. The secondary creep strain is about 50% of the primary creep strain.

Control Effect of Stenotrophomonas maltophilia BW-13 strain to the lettuce Bottom rot

  • Park, Jong-Young;Kim, Hyun-Ju;Bak, Joung-Woo;Lee, Kwang-Youll;Jun, Ok-Ju;Lee, Jin-Woo;Jung, Soon-Je;Moon, Byung-Ju
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.103.1-103
    • /
    • 2003
  • An antagonistic bacteria, Stenotrophomonas maitophilia BW-13 strain which was effectively inhibited mycerial growth of Bottom rot pathogen, Rhizoctonia solani PY-1 strain was isolated from the rhizosphere of the lettuce in Uiryeong-Gun, Gyeongsangnam-Do from 2002 to 2003. For the biological control, the most suitable inoculum and its density of pathogen, PY-1 strain ware tested prior biological control test, For the pathogenicity test, A inoculum (wheat bran)sawdust+rice bran+PDB) showing disease incidence of 100% was selected as the most suitable inoculum, which showed more effective than B inoculum (sawdust+rice bran+DW) and mycelial disc. also, In selection of the amount of inoculum (40g, 50g, 60g, 70g, 80g), most suitable amount of inoculum of pathogen determined as 40g showing disease incidence of 80%. For the selection of effective microorganism to control bottom rot on lettuce, about 200 isolates were isolated from the diseased soil and lettuce leaves, and examined their antifungal activity to the pathogen on PDA. As the pots assay, BW-13 strain showed the highest control value as 90%, and followed by R-13 and R-26 strain as 80% and 60%, respectively. Selected BW-13 isolates identified as 5. maltophilia (GeneBank accession no. AJ293473.1, 99%) by 16S rRNA sequencing. This is the first report on the biological control using by S. maltophilia to the bottom rot pathogen, Rhizoctonia solani PY-1 strain.

  • PDF

A Plant Growth-Promoting Pseudomonas fluorescens GL20: Mechanism for Disease Suppression, Outer Membrane Receptors for Ferric Siderophore, and Genetic Improvement for Increased Biocontrol Efficacy

  • LIM, HO SEONG;JUNG MOK LEE;SANG DAL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.249-257
    • /
    • 2002
  • Pseudomonas fluorescens GL20 is a plant growth-promoting rhizobacterium that produces a large amount of hydroxamate siderophore under iron-limited conditions. The strain GL20 considerably inhibited the spore germination and hyphal growth of a plant pathogenic fungus, Fusarium solani, when iron was limited, significantly suppressed the root-rot disease on beans caused by F. solani, and enhanced the plant growth. The mechanism for the beneficial effect of strain GL20 on the disease suppression was due to the siderophore production, evidenced by mutant strains derived from the strain. Analysis of the outer membrane protein profile revealed that the growth of strain GL20 induced the synthesis of specific iron-regulated outer membrane proteins with molecular masses of 85- and 90 kDa as the high-affinity receptors for the ferric siderophore. In addition, a cross-feeding assay revealed the presence of multiple inducible receptors for heterologous siderophores in the strain. In order to induce increased efficacy and potential in biological control of plant disease, a siderophore-overproducing mutant, GL20-S207, was prepared by NTG mutagenesis. The mutant GL20-S207 produced nearly 2.3 times more siderophore than the parent strain. In pot trials of beans with F. solani, the mutant increased plant growth up to 1.5 times compared with that of the parent strain. These results suggest that the plant growth-promoting P. fluorescens GL20 and the genetically bred P. fluorescens GL20-S207 can play an important role in the biological control of soil-borne plant diseases in the rhizosphere.

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi;Nguyen, Huong Lan;Nguyen, Minh Hong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1005-1012
    • /
    • 2020
  • Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

A Genetically Engineered Pseudomonas fluorescens Strain Possesses Dual Activity Against Phytopathogenic Fungi and Insects

  • Lu, Wenwei;Zhang, Weiqiong;Bai, Yan;Fu, Yingying;Chen, Jun;Geng, Xiaolu;Wang, Yujing;Xiao, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.281-286
    • /
    • 2010
  • A Pseudomonas fluorescens strain was isolated and found to show antagonistic activity against phytopathogenic fungi and to possess a gene responsible for production of antibiotic 2,4-diacetylphloroglucinol. For the extension of biocontrol range, a gene for an Androetonus australis Hector insect toxin 1 (AaHIT1), one of the most known toxic insect-selective peptides, was designed and synthesized according to the preferred codon usage of Pseudomonas fluorescens, cloned, and transformed into the strain by pSUP106 vector, a broad-host-range plasmid. Bioassays indicated that the engineered strain was able to produce AaHIT1 with insecticidal activity, and at the same time retain the activity against plant pathogen. The experiments for nonplanted soil and rhizosphere colonization showed that, similar to the population of the wild-type strain, that of the engineered strain remained relatively constant in the first 10 days, and the subsequent 50 days, suggesting that AaHIT1 expression in the bacterial cell does not substantially impair its long-term colonization. It is first reported that a Pseudomonas fluorescens strain expressing an active scorpion neurotoxin has dual activity against phytopathogenic fungi and insects, making at attractive for agronomic applications.

Experimental and numerical studies on mechanical behavior of buried pipelines crossing faults

  • Zhang, Dan F.;Bie, Xue M.;Zeng, Xi;Lei, Zhen;Du, Guo F.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.71-86
    • /
    • 2020
  • This paper presents a study on the mechanical behavior of buried pipelines crossing faults using experimental and numerical methods. A self-made soil-box was used to simulate normal fault, strike-slip fault and oblique slip fault. The effects of some important parameters, including the displacement and type of fault, the buried depth and the diameter of pipe, on the deformation modes and axial strain distribution of the buried pipelines crossing faults was studied in the experiment. Furthermore, a finite element analysis (FEA) model of spring boundary was developed to investigate the performance of the buried pipelines crossing faults, and FEA results were compared with experimental results. It is found that the axial strain distribution of those buried pipelines crossing the normal fault and the oblique fault is asymmetrical along the fault plane and that of buried pipelines crossing the strike-slip fault is approximately symmetrical. Additionally, the axial peak strain appears near both sides of the fault and increases with increasing fault displacement. Moreover, the axial strain of the pipeline decreases with decreasing buried depth or increasing ratios of pipe diameter to pipe wall thickness. Compared with the normal fault and the strike-slip fault, the oblique fault is the most harmful to pipelines. Based on the accuracy of the model, the regression equations of the axial distance from the peak axial strain position of the pipeline to the fault under the effects of buried depth, pipe diameter, wall thickness and fault displacement were given.

Isolation of $\alpha$-Amylase Hyperproducing Strain HG4 from Bacillus sp. and Some Properties of the Enzyme ($\alpha$-Amylase 생산성이 높은 Bacillus sp. HG4의 분리 및 효소 특성)

  • 김무성;오평수
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.464-469
    • /
    • 1991
  • An $\alpha$-amylase producing bacterium, strain 2B, was isolated from soil and identified to genus Bacillus. To enhance $\alpha$-amylase productivity, strain 2B was mutagenized successively with nitrosoguanidine. For an efficient selection of a-amylase hyperproducers, mutants which produced $\alpha$-amylase in the presence of glucose were isolated. The resultant mutant HG4, which was classified as constitutive and catabolite derepressed hyperproducer of a-amylase, produced about 30 folds more $\alpha$-amylase than parental strain in medium containing lactose as carbon source. The strain HG4 grew rapidly and produced enzyme in parallel with cell growth. Moreover, its cell lysis did not occur until time of maximal yield of enzyme, which was considered to be a favorable characteristic for the production and purificiation of enzyme in industrial scale. The enzymatic properties of parental strain 2B and mutant strain HG4 were almost the same. The optimal temperature and pH for enzyme reaction was $70^{\circ}C$ and pH 6.0, respectively, in 'the presence of 0.6mM $Ca^[2+}$ as an effective stabilizer.

  • PDF