References
- Arnow, L. E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 118: 531-537
- Becker, J. O. and R. J. Cook. 1988. Role of siderophores in suppression of Pythium species and production of increasedgrowth response of wheat by fluorescent pseudomonads. Phytopathol. 78: 778-782
- Biedermann, G. and P. Schindler. 1957. On the solubility of precipitated iron(III) hydroxide. Acta Chem. Scand. 11: 731-740
- Bitter, W., J. D. Marugg, L. A. de Weger, J. Tommassen, and P. J. Weisbeek. 1991. The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: Homology to TonBdependent Escherichia coli receptors and specificity of the protein. Mol. Microbiol. 5: 647-655
- Brisbane, P. G. and A. D. Rovira. 1988. Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads. Plant Pathol. 37: 104-111
- Buysens, S., K. Heungens, J. Poppe, and M. Höfte. 1996. Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62: 865-871
- Cornelis, P., D. Hohnadel, and J. M. Meyer. 1989. Evidence for different pyoverdin-mediated iron uptake systems among Pseudomonas aeruginosa strains. Infect. Immun. 57: 3491- 3497
- Csaky, T. 1948. On the estimation of bound hydroxylamine. Acta Chem. Scand. 2: 450-454
- Duijff, B. J., G. Recorbet, P. A. H. M. Bakker, J. E. Loper, and P. Lemanceau. 1999. Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathol. 89: 1073- 1079 https://doi.org/10.1094/PHYTO.1999.89.11.1073
- Filip, C., G. Fletcher, J. L. Wulff, and C. F. Earhart. 1973. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J. Bacteriol. 115: 717-722
- Gensberg, K., K. Hughes, and A. W. Smith. 1992. Siderophorespecific induction of iron uptake in Pseudomonas aeruginosa. J. Gen. Microbiol. 138: 2381-2387
- Hamdan, H., D. M. Weller, and L. S. Thomashow. 1991. Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl. Environ. Microbiol. 57: 3270-3277
- Hill, D. S., J. I. Stein, N. R. Torkewitz, A. M. Morse, C. R. Howell, J. P. Pachlatko, J. O. Becker, and J. M. Ligon. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 60: 78-85
- Hofte, M., S. Buysens, N. Koedam, and P. Cornelis. 1993. Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6: 85-91
- Howell, C. R. and R. D. Stipanovic. 1980. Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens Pf-5 and its antibiotic, pyoluteorin. Phytopathol. 70: 712-715
- Jurkevitch, E., Y. Hadar, and Y. Chen. 1992. Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl. Environ. Microbiol. 58: 119-124
- King, J. V., J. J. R. Campbell, and B. A. Eagles. 1948. Mineral requirements for fluorescin production by Pseudomonas. Can. J. Research 26C: 514-519
- Kloepper, J. W., J. Leong, M. Teintze, and M. N. Schroth. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886
- Koster, M., W. Ovaa, W. Bitter, and P. Weisbeek. 1995. Multiple outer membrane receptors for uptake of ferric pseudobactins in Pseudomonas putida WCS358. Mol. Gen. Genet. 248: 735-743
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Leeman, M., F. M. den Ouden, J. A. van Pelt, F. P. M. Dirkx, H. Steijl, P. A. H. M. Bakker, and B. Schippers. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathol. 86: 149-155 https://doi.org/10.1094/Phyto-86-149
- Lemanceau, P., P. A. Bakker, W. J. De Kogel, C. Alabouvette, and B. Schippers. 1992. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl. Environ. Microbiol. 58: 2978-2982
- Lim, H. S. and S. D. Kim. 1997. Role of siderophores in biocontrol of Fusarium solani and enhanced growth response of bean by Pseudomonas fluorescens GL20. J. Microbiol. Biotechnol. 7: 13-20
- Lindsay, W. L. 1979. Chemical Equilibria in Soils. John Wiley, NY, U.S.A
- Loper, J. E. 1988. Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathol. 78: 166-172 https://doi.org/10.1094/Phyto-78-166
- Loper, J. E. and M. D. Henkels. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65: 5357-5363
- Magazin, M. D., J. C. Moores, and J. Leong. 1986. Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growthpromoting Pseudomonas strain. J. Biol. Chem. 261: 795- 799
-
Marugg, J. D., L. A. Weger, H. B. Nielander, M. Oorthuizen, K. Recourt, B. Lugtenberg, G. A. J. M. Hofstad, and P. J. Weisbeek. 1989. Cloning and characterization of a gene encoding an outer membrane protein required for siderophoremediated uptake of Fe
$^3+$ in Pseudomonas putida WCS358. J. Bacteriol. 171: 2819-2826 https://doi.org/10.1128/jb.171.5.2819-2826.1989 - Meyer, J. M. and M. A. Abdallah. 1978. The fluorescent pigment of Pseudomonas fluorescens, biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. 107: 319-328
- Meyer, J. M. and J. M. Hornsperger. 1978. Role of pyoverdinepf, the iron-binding fluorescent pigment of Pseudomonas fluorescens, in iron transport. J. Gen. Microbiol. 107: 329- 331
- Meyer, J. M., M. Mock, and M. A. Abdallah. 1979. Effect of iron on the protein composition of the outer membrane of fluorescent pseudomonads. FEMS Microbiol. Lett. 5: 395- 398
- Meyer, J. M. 1992. Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: Possible involvement of porin OprF in iron translocation. J. Gen. Microbiol. 138: 951-958 https://doi.org/10.1099/00221287-138-5-951
- Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, NY, U.S.A
- Neilands, J. B. 1982. Microbial envelope proteins related to iron. Annu. Rev. Microbiol. 36: 285-309 https://doi.org/10.1146/annurev.mi.36.100182.001441
- Neilands, J. B. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50: 715-731 https://doi.org/10.1146/annurev.bi.50.070181.003435
- Ocaktan, A., I. Schalk, C. Hennard, C. Linget-Morice, P. Kyslik, A. W. Smith, P. A. Lambert, and M. A. Abdallah. 1996. Specific photoaffinity labelling of a ferripyoverdin outer membrane receptor of Pseudomonas aeruginosa. FEBS Lett. 396: 243-247
- Paulitz, T. C. and J. E. Loper. 1991. Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathol. 81: 930-935
- Poole, K., S. Neshat, and D. Heinrichs. 1991. Pyoverdinmediated iron transport in Pseudomonas aeruginosa: Involvement of a high molecular-mass outer membrane protein. FEMS Microbiol. Lett. 78: 1-5
- Ross, I. L., Y. Alami, P. R. Harvey, W. Achouak, and M. H. Ryder. 2000. Genetic diversity and biological control activity of novel species of closely related Pseudomonads isolated from wheat field soils in South Australia. Appl. Environ. Microbiol. 66: 1609-1616
- Ryu, J. S., S. D. Lee, Y. H. Lee, S. T. Lee, D. K. Kim, S. J. Cho, S. R. Park, D. W. Bae, K. H. Park, and H. D. Yun. 2000. Screening and identification of an antifungal Pseudomonas sp. that suppresses balloon flower root rot caused by Rhizoctonia solani. J. Microbiol. Biotechol. 10: 435-440
- Scher, F. M. and R. Baker. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathol. 72: 1567-1573
- Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56
- Shanahan, P., D. J. O Sullivan, P. Simpson, J. D. Glennon, and F. O Gara. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353-358
- Sneh, B., M. Dupler, Y. Elad, and R. Baker. 1984. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium-suppressive soil. Phytopathol. 74: 1115- 1124
- Spiro, T. G. 1977. Chemistry and biochemistry of iron, pp. 23-32. In E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Proteins of Iron Metabolism. Grune and Stratton, NY, U.S.A
- Thomashow, L. S. and D. M. Weller. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens 2-97 in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170: 3499-3508
- Voisard, C., C. Keel, D. Haas, and G. Defago. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351-358
- Waring, W. S. and C. H. Werkman. 1942. Growth of bacteria in an iron-free medium. Arch. Biochem. 1: 303-310
- Weller, D. M., W. J. Howie, and R. J. Cook. 1988. Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathol. 78: 1094-1100
- Xu, G. W. and D. C. Gross. 1986. Selection of fluorescent pseudomonads antagonistic to Erwinia carotobora and suppressive of potato seed piece decay. Phytopathol. 76: 414-422