• Title/Summary/Keyword: outer membrane receptor

Search Result 11, Processing Time 0.024 seconds

A Plant Growth-Promoting Pseudomonas fluorescens GL20: Mechanism for Disease Suppression, Outer Membrane Receptors for Ferric Siderophore, and Genetic Improvement for Increased Biocontrol Efficacy

  • LIM, HO SEONG;JUNG MOK LEE;SANG DAL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.249-257
    • /
    • 2002
  • Pseudomonas fluorescens GL20 is a plant growth-promoting rhizobacterium that produces a large amount of hydroxamate siderophore under iron-limited conditions. The strain GL20 considerably inhibited the spore germination and hyphal growth of a plant pathogenic fungus, Fusarium solani, when iron was limited, significantly suppressed the root-rot disease on beans caused by F. solani, and enhanced the plant growth. The mechanism for the beneficial effect of strain GL20 on the disease suppression was due to the siderophore production, evidenced by mutant strains derived from the strain. Analysis of the outer membrane protein profile revealed that the growth of strain GL20 induced the synthesis of specific iron-regulated outer membrane proteins with molecular masses of 85- and 90 kDa as the high-affinity receptors for the ferric siderophore. In addition, a cross-feeding assay revealed the presence of multiple inducible receptors for heterologous siderophores in the strain. In order to induce increased efficacy and potential in biological control of plant disease, a siderophore-overproducing mutant, GL20-S207, was prepared by NTG mutagenesis. The mutant GL20-S207 produced nearly 2.3 times more siderophore than the parent strain. In pot trials of beans with F. solani, the mutant increased plant growth up to 1.5 times compared with that of the parent strain. These results suggest that the plant growth-promoting P. fluorescens GL20 and the genetically bred P. fluorescens GL20-S207 can play an important role in the biological control of soil-borne plant diseases in the rhizosphere.

Clostridium difficile Toxin A Upregulates Bak Expression through PGE2 Pathway in Human Colonocytes

  • Kim, Young Ha;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1675-1681
    • /
    • 2019
  • Clostridium difficile toxin A is known to cause colonic epithelial cell apoptosis, which is considered the main causative event that triggers inflammatory responses in the colon, reflecting the concept that the essential role of epithelial cells in the colon is to form a physical barrier in the gut. We previously showed that toxin A-induced colonocyte apoptosis and subsequent inflammation were dependent on prostaglandin E2 ($PGE_2$) produced in response to toxin A stimulation. However, the molecular mechanism by which $PGE_2$ mediates cell apoptosis in toxin A-exposed colonocytes has remained unclear. Here, we sought to identify the signaling pathway involved in toxin A-induced, $PGE_2$-mediated colonocyte apoptosis. In non-transformed NCM460 human colonocytes, toxin A exposure strongly upregulated expression of Bak, which is known to form mitochondrial outer membrane pores, resulting in apoptosis. RT-PCR analyses revealed that this increase in Bak expression was attributable to toxin A-induced transcriptional upregulation. We also found that toxin A upregulation of Bak expression was dependent on $PGE_2$ production, and further showed that this effect was recapitulated by an Prostaglandin E2(PGE2) receptor-1 receptor agonist, but not by agonists of other EP receptors. Collectively, these results suggest that toxin A-induced cell apoptosis involves $PGE_2$-upregulation of Bak through the EP1 receptor.

Role of vascular smooth muscle cell in the inflammation of atherosclerosis

  • Lim, Soyeon;Park, Sungha
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.

Mechanisms of Glucose Uptake in Cancer Tissue (악성종양의 포도당 섭취 기전)

  • Chung, June-Key
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • Cancer cells are known to show increased rates of glycolysis metabolism. Based on this, PET studies using F-18-fluorodeoxyglucose have been used for the detection of primary and metastatic tumors. To account for this increased glucose uptake, a variety of mechanisms has been proposed. Glucose influx across the cell membrane is mediated by a family of structurally related proteins known as glucose transporters (Gluts). Among 6 isoforms of Gluts, Glut-1 and/or Glut-3 have been reported to show increased expression in various tumors. Increased level of Glut mRNA transcription is supposed to be the basic mechanism of Glut overexpression at the protein level. Some oncogens such as src or ras intensely stimulate Glut-1 by means of increased Glut-1 mRNA levels. Hexokinase activity is another important factor in glucose uptake in cancer cells. Especially hexokinase type II is considered to be involved in glycolysis of cancer cells. Much of the hexokinase of tumor cells is bound to outer membrane of mitochondria by the porin, a hexokinase receptor. Through this interaction, hexokinase may gain preferred access to ATP synthesized via oxidative phosphorylation in the inner mitochondria compartment. Other biologic factors such as tumor blood flow, blood volume, hypoxia, and infiltrating cells in tumor tissue are involved. Relative hypoxia may activate the anaerobic glycotytic pathway. Surrounding macrophages and newly formed granulation tissue in tumor showed greater glucose uptake than did viable cancer cells. To expand the application of FDG PET in oncology, it is important for nuclear medicine physicians to understand the related mechanisms of glucose uptake in cancer tissue.

  • PDF

An Electron Microscopy of the Retina in the Gallus domesticus B. (家鷄 網膜의 電子顯微鏡的 硏究)

  • Paik, Kyung Ki;Choi, Choon Keun
    • The Korean Journal of Zoology
    • /
    • v.15 no.2
    • /
    • pp.71-85
    • /
    • 1972
  • This investigation was undertaken to establish the ultrastructural organization of the retina in domestic fowl (Gallus domesticus B.) comparing with the ultrastructure that has been indicated in other Aves by several workers. The electron microscope observations were made on selected segments of retinal tissue prefixed for 2 hrs in 1.25% glutaraldehyde buffered with 0.2 M cacodylate at pH 7.2 and then postfixed in cold 1% osmium tetroxide in 0.4 M cacodylate buffer for 2 hrs. After postfixation, tissues were dehydrated in alcohol series, embedded in Epon 812 mixture from propylene oxide and stained with saturated uranyl acetate and $Pb(NO_3)_2$ solution. Specimens were examined with a Hitachi HS-7S electron microscope. The pigment epithelia cells contain numerous mitochondria with prominent dense granules and several changeful spaped Golgi bodies. The internal fine structure of the receptor outer segments revealed the characteristic stacks or arrays of bimembranous disks. The ellipsoid outer portion of the cone inner segments is composed of a tightly packed mass of extraordinarily large mitochondria. The outer limiting membrane is seen to contain many junctional complexes, the fibrillar material of which is electron-dense.

  • PDF

Etifoxine for Pain Patients with Anxiety

  • Choi, Yun Mi;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.28 no.1
    • /
    • pp.4-10
    • /
    • 2015
  • Etifoxine (etafenoxine, $Stresam^{(R)}$) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by $GABA_A{\alpha}2$ receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to ${\beta}2$ or ${\beta}3$ subunits of the $GABA_A$ receptor complex. It also modulates $GABA_A$ receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates $GABA_A$ receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.

Physics on cancer and its curing

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.91-97
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging n-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion because of the n-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. An understanding of the mechanisms responsible for the control of normal proliferation and differentiation of the various cell types which make up the human body will undoubtedly allow a greater insight into the abnormal growth of cells, A large body of biochemical evidence was eventually used to generate a receptor model with an external ligand binding domain linked through a single trans-membrane domain to the cytoplasmic tyrosine kinase and autophosphory-lation domains. The ligand induced conformational change in the external domain generates either a push-pull or rotational signal which is transduced from the outside to the inside of cell.l.ell.

  • PDF

Translocator protein (TSPO): the new story of the old protein in neuroinflammation

  • Lee, Younghwan;Park, Youngjin;Nam, Hyeri;Lee, Ji-Won;Yu, Seong-Woon
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.20-27
    • /
    • 2020
  • Translocator protein (TSPO), also known as peripheral benzodiazepine receptor, is a transmembrane protein located on the outer mitochondria membrane (OMM) and mainly expressed in glial cells in the brain. Because of the close correlation of its expression level with neuropathology and therapeutic efficacies of several TSPO binding ligands under many neurological conditions, TSPO has been regarded as both biomarker and therapeutic target, and the biological functions of TSPO have been a major research focus. However, recent genetic studies with animal and cellular models revealed unexpected results contrary to the anticipated biological importance of TSPO and cast doubt on the action modes of the TSPO-binding drugs. In this review, we summarize recent controversial findings on the discrepancy between pharmacological and genetic studies of TSPO and suggest some future direction to understand this old and mysterious protein.

TOMM20 as a potential therapeutic target of colorectal cancer

  • Park, Sang-Hee;Lee, Ah-Reum;Choi, Keonwoo;Joung, Soyoung;Yoon, Jong-Bok;Kim, Sungjoo
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.712-717
    • /
    • 2019
  • Translocase of outer mitochondrial membrane 20 (TOMM20) plays an essential role as a receptor for proteins targeted to mitochondria. TOMM20 was shown to be overexpressed in various cancers. However, the oncological function and therapeutic potential for TOMM20 in cancer remains largely unexplored. The purpose of this study was to elucidate the underlying molecular mechanism of TOMM20's contribution to tumorigenesis and to explore the possibility of its therapeutic potential using colorectal cancer as a model. The results show that TOMM20 overexpression resulted in an increase in cell proliferation, migration, and invasion of colorectal cancer (CRC) cells, while siRNA-mediated inhibition of TOMM20 resulted in significant decreases in cell proliferation, migration, and invasion. TOMM20 expression directly impacted the mitochondrial function including ATP production and maintenance of membrane potential, which contributed to tumorigenic cellular activities including regulation of S phase cell cycle and apoptosis. TOMM20 was overexpressed in CRC compared to the normal tissues and increased expression of TOMM20 to be associated with malignant characteristics including a higher number of lymph nodes and perineural invasion in CRC. Notably, knockdown of TOMM20 in the xenograft mouse model resulted in a significant reduction of tumor growth. This is the first report demonstrating a relationship between TOMM20 and tumorigenesis in colorectal cancer and providing promising evidence for the potential for TOMM20 to serve as a new therapeutic target of colorectal cancer.

Controlled Release of Tamsulosin from Nanopore-Forming Granules (미세 다공성 과립을 이용한 탐스로신의 방출제어)

  • Seo, Seong-Mi;Lee, Hyun-Suk;Lee, Jae-Hwi;Lee, Ha-Young;Lee, Bong;Lee, Hai-Bang;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Tamsulosin or a salt thereof such as its hydrochloride salt has been known to have an adrenaline ${\alpha}$ receptor blocking action for urethra and prostate areas. It has been widely used as a drug which lowers the prostate pressure and improves urinary disturbance accompanied by prostate-grand enlargement, thus for the treatment of prostatic hyperplasia. To avoid dose-dependent side effects of tamsulosin upon oral administration, the development of sustained-release delivery system is essentially required, that can maintain therapeutic drug levels for a longer period of time. The aim of this study was therefore to formulate sustained-release tamsulosin granules and assess their formulation variables. We designed entric coated sustained-release tamsulosin granules for this purpose. Nano-pores in the outer controlled release membrane were needed in order to obtain initial tamsulosin release even in an acidic environment such as gastric region. In our sustained release osmotic granule system, hydroxypropylmethylcellulose in a drug-containing layer was used as a rate controller. The drug-containing granules were coated with hydroxypropylmethylcellulose phthalate (HPMCP) and Eudragit, along with glycerol triacetate as an aqueous nano-pore former. The release of tamsulosin depended heavily on the type of Eudragit such as RS, RL, NE 30D, used in the formulation of controlled release layer. These results obtained clearly suggest that the sustained-release oral delivery system for tamsulosin could be designed with satisfying drug release profile approved by the Korean Food and Drug Administration.