• Title/Summary/Keyword: soil nailing method

Search Result 96, Processing Time 0.031 seconds

An Experimental Study on Behavior Characteristics of the Pretension Soil Nailing Systems (프리텐션 쏘일네일링 시스템의 거동특성에 관한 실험적 고찰)

  • Choi, Young-Geun;Shin, Bang-Woong;Park, Si-Sam;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • Application of the soil nailing method is continuously extending in maintaining stable excavations and slopes. However, ground anchor support system occasionally may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve local stability. In this study, a newly modified soil nailing technology named as the PSN (Pretension Soil Nailing) is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, laboratory model tests are carried out to investigate the failure mechanism and behavior characteristics of the PSN system. Various results of model tests are also analyzed to provide a fundamental basis for the efficient design.

Assessment of Applicability of Pretentioned Soil-Nail Systems with in-situ monitoring (현장 계측을 통한 프리텐션 쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Ahn, Kwang-Kuk;Kim, Hong-Taek;Bang, Yoon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.320-329
    • /
    • 2005
  • The use of diverse methods for the retaining system has been continuously increased in order to maintain the stability during excavation. However, ground anchor system occasionally may have the restriction in urban excavation sites nearby the existing structures because of space limitation. In this case, soil nailing system with relatively short length of nails could be efficiently useful as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in excavating the zone of weak soils or nearby the existing structures. Therefore, applying the pretension force to the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve the local slope stability. In this study, a newly modified soil nailing technology named as the PSN(Pretention Soil Nailing) is developed to reduce both facing displacements and ground surface settlements during top-down excavation process as well as to increase the global slope stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the field tests including pull-out tests were fulfilled to investigate the behavior of characteristics for PSN system. All results of tests were also analyzed to provide a fundamental and efficient design.

  • PDF

A Study on the Restraint Effect on Lateral Displacement of an Inclined Earth Retaining Structure Integrated with Soil Nailing in Sandy Ground (사질토지반에 설치된 소일네일 복합형 IER의 수평변위 억제효과에 관한 연구)

  • Park, Tae-Keon;Im, Jong-Chul;Yoo, Jae-Won;Kim, Chang-Young;Kang, Sang-Kyun;Lee, Woo-Je
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.33-47
    • /
    • 2017
  • A self-supported temporary excavation method called IER is normally applicable to excavation depth ranging from 6.0 m to 7.0 m though the method depends on ground condition and overburden load. Combining IER with another method is required in deeper excavation depth in order to maintain the structural stability of the IER. In this study, we performed model tests and 3D FE analysis to check the stability of the IER adopting soil nailing method, and to propose its effective installation method. The lateral displacement of the IER using soil nailing decreased by 92% of that of IER without soil nailing. Optimum design is possible for both economic feasibility and stability when interval spacing and length of soil nails is $1.5m(S_h){\times}0.75m(S_v)$ and 86% of excavation depth, respectively. Excavation depth using IER increases 1.71 times by adopting soil nailing in increment of lateral displacement of IER right before the last excavation stage.

Numerical Analysis of Soil Nail System (소일네일링 구조물의 수치해석)

  • Yu, Nam-Jae;Kim, Young-Gil;Park, Byung-Soo;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.115-125
    • /
    • 1999
  • Current design and analyzing methods about soil nailing structures, developed on the basis of results obtained from experiments in laboratory or in field and numerical analyses, have applied different interaction mechanisms between the reinforced nails and the surrounding ground, and this different safety factors against failure have been obtained. They might be proper approached if the assumptions about rigidity of nails and ground conditions are met with actual conditions occurred in field. Otherwise, they would result in designing on analyzing in inappropriate ways so that it is needed to evaluate the validity of them. Therefore, overall behavior and failure mechanism about soil nailing system were investigated by performing numerical method. Using a finite element analysis, parametric studies were made to examine the importance of the various parameters and their effects on the soil nailing system. The numerical technique of FEM, implemented with Hyperbolic constitutive model, was also used to analyze the test results.

  • PDF

Estimation of LRFD Resistance Bias Factors for Pullout Resistance of Soil-Nailing (쏘일네일링의 인발저항에 대한 LRFD 저항편향계수 산정)

  • Son, Byeong-Doo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.5-16
    • /
    • 2015
  • Considering the conversion of the Korea Construction Standards to Limit State Design (LSD), we analyzed the resistance bias factor for pullout resistance, as a part of the development of the Load and Resistance Factor Design (LRFD) for soil nailing; very few studies have been conducted on soil nailing. In order to reflect the local characteristics of soil nailing, such as the design and construction level, we collected statistics on pullout tests conducted on slopes and excavation construction sites around the country. In this study a database was built based on the geotechnical properties, soil nailing specifications, and pullout test results. The resistance bias factors are calculated to determine the resistance factor of the pullout resistance for gravity and pressurized grouting method, which are the most commonly used methods in Korea; moreover, we have relatively sufficient data on these methods. We found the resistance bias factors to be 1.144 and 1.325, which are relatively conservative values for predicting the actual ultimate pullout resistance. It showed that our designs are safer than those found in a research case in the United States (NCHRP Report); however, there was an uncertainty, $COV_R$, of 0.27-0.43 in the pullout resistance, which is relatively high. In addition, the pressurized grouting method has a greater margin of safety than the gravity grouting method, and the actual ultimate pullout resistance determined using the pressurized grouting method has low uncertainty.

Stability Analysis and Reliability Evaluation of the Pretensioned Soil Nailing System (프리텐션 쏘일네일링 시스템의 안정해석 및 신뢰도 분석)

  • 김홍택;강인규;박사원;고용일;권영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.105-127
    • /
    • 1999
  • Application of the soil nailing method is continuously extended in maintaining stable excavations and slopes. Occasionally, however, ground anchor support system may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then, could play important roles in reducing deformations mainly in an upper part of the nailed-soil excavation system as well as improving local stability. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the pretensioned soil nailing system. Also proposed are techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. The predicted results are compared with the limited measurements obtained from the excavation site constructed by using the pretensioned soil nails. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors are analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and FLAC$^{2D}$ program analysis.s.

  • PDF

A Case Study on the Restoration of Collapsed Geosynthetics Reinforced Soil Wall Using Limit Equilibrium and Numerical Analyses (한계평형해석과 수치해석에 의한 붕괴된 보강토 옹벽 복구 사례에 관한 연구)

  • Won, Myoung-Soo;Kim, Hyeong-Joo;Kim, Young-Shin;Choi, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.107-118
    • /
    • 2013
  • Geosynthetic reinforced soil (GRS) walls have been increasingly applied recently due to its numerous geotechnical engineering applications. However failure occurs in some cases of constructed GRS walls. These GRS wall failures are mostly due to the unpredictable characteristics of intensive rainfall. Hence, the need for new and innovative ideas for rehabilitation methods has been getting attention. This paper introduces a case study for the design and restoration method of collapsed GRS wall using Limit equilibrium and Numerical Analyses. Restoration method includes: (1) soil nailing without backfill excavation and (2) reconstruction with GRS wall after collapsed backfill excavation. Analyses results show minimal horizontal displacements and shear strain on the reinforced concrete facing for the restoration case with soil nailing. On the other hand, horizontal displacements are developed in the middle of the mortar block facing and shear strains are developed at the bottom facing with spiral curves for the reconstructed GRS wall after collapsed backfill excavation. Therefore, the collapsed GRS wall was restored with the soil nailing without backfill excavation and its construction procedures are discussed in this paper.

Case Study of Ground Disturbance Characteristic due to Drilling Machine in Adjacent Deep Excavation (근접 깊은 굴착에서 천공장비에 의한 지반교란 특성 사례 연구)

  • 김성욱;한병원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.77-84
    • /
    • 2003
  • Deep excavations in the urban areas have been frequently going on in large scale. Soil-nailing and Earth-anchor supporting methods are generally used in deep excavation. These construction methods cause ground disturbances during drilling process, and damages of adjacent structures and ground due to the differential settlement throughout construction period, and unexpected behaviors of supporting system according to the characteristics of drilling machine and ground condition. This article introduces two actual examples of adjacent deep excavation for the construction of university buildings in granitic Seoul area. The important results of construction and measurements obtained using Crawler drilling machine for Soil-nailing and Earth-anchor supporting methods are summarized. And some suggestions are given to improve and develop the technique of design and construction in the deep excavation projects having similar ground condition and supporting method.

  • PDF

Ground Behavior Behind Soil Nailed Wall by Feed Back Analysis (역해석에 의한 쏘일네일링 벽체 배면지반의 거동 연구)

  • Jeon, Seong-Kon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.5-13
    • /
    • 2003
  • The soil nailing is one of the useful support-system in urban excavation because of the presence of other structures in the vicinity Since the soil nailing system was introduced, model experiments and theoretical studies have been performed to investigate behavior of soil nailed wall. However, there are few data in the case of multi-layered soil strata just like Seoul Metropolitan area in Korea. The feed back analyses are carried out using the measured wall displacement data for soil nailing construction sites with multi-layered strata in order to analyze the distance and the coefficients of extension zone of ground behind soil nailed wall. As a result, the distance of extension zone increased with increasing of the final excavation depth and the ratio of the distance to the final excavation depth was shown to be about 94% of the final excavation depth. Also, the coefficients of extension zone increased with enlargement of soil layer thickness and converged into constant value of 1.05. On the other hand, the maximum vertical displacements by the feed back analysis and Caspe's method were shown to be approximately 80%, 150~280% of the maximum horizontal displacement respectively.