• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.033 seconds

Simulation of Sediment Yield from Imha Watershed Using HSPF (HSPF를 이용한 임하호 유역 유사량 모의)

  • Jeon, Ji-Hong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.39-48
    • /
    • 2010
  • Sediment yields from Imha watershed were simulated during 1993-2008 using Hydrologic Simulation Program-Fortran (HSPF). Using observed daily stream flow for 2004-2008 and hourly suspended solid concentration for three events during 2006, HSPF was calibrated and validated at the sites of Imha and Youngyang for stream flow and Dongchun and Jangpachun for sediment yield. The calibration and validation results represented high model efficiency for simulating daily stream flow and hourly suspended solid. The determination coefficients of calibration and validation were 0.90 and 0.81 for daily stream flow, and 0.91 and 0.86 for monthly stream flow, respectively. Based on model tolerances for calibration and validation of stream flow, HSPF performance for simulating stream flow represented 'very good'. The determination coefficients of calibration and validation were 0.94-0.96 and 0.95 for hourly sediment yields, respectively. The average yearly sediment yield during 1993-2008 was 122,290 ton/year and most of sediment yield (77 % of total yield) were generated from June to August. The calibrated HSPF simulated well the movement of water and eroded soil within Imha watershed.

Deformation analysis of Excavated Behind Ground by The Artificial Displacement Method (I) - Program Development and Verification - (강제변위법을 이용한 굴착배면지반의 변형해석(I) - 프로그램 개발 및 검증 -)

  • Yun, Jung-Mann;Han, Jung-Gun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.9-15
    • /
    • 2006
  • The numerical analysis program using artificial displacement method is developed to analyze the deformation behavior of excavated behind ground of retention wall. The elasto-plastic model suggested by Drucker-Prager was used to represent soil behavior and the model's solution was obtained from the return mapping method. To validate of the program, the predicted results by the numerical analysis and the measured results by a field test are compared. The results of numerical analysis showed good agreement with the measured results in field and theoretical values.

  • PDF

Reservoir Sizing for Irrigation to Upland Area with Sparse Data (자료 부족 지역의 밭 관개용수 공급을 위한 저수지 규모 결정)

  • Noh, Jae-Kyoung;Lee, Jae-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.372-372
    • /
    • 2012
  • 해외 사업에서 지구에 따라 기상 자료가 부족한 지역이 많다. 여기서는 에티오피아의 밭 관개 용수 공급을 위해 일 강우 자료와 월평균 기상자료를 이용하여 일 증발 자료를 생산하여 적정 저수지 위치와 규모를 정한 결과 다음과 결과를 얻었다. 첫째, 구글지도와 DEM을 이용하여 6개의 댐 후보지를 선정하였고, 표고별 저수면적, 저수량 관계식을 도출하였다. 둘째, 기상자료 수집의 어려움으로 한국 자료를 분석하여 현지의 장기간 기상 자료를 가공, 모의하여 적용하였다. 셋째, 현지 유량측정 자료와 한국 관측자료를 이용하여 현지의 합리적인 일 유입량 자료를 생산하였다. 넷째, 현지의 토양조건을 고려하고, 토양수분 물수지 모형을 개발하여 토양수분 부족량 공급 기준의 합리적 관개용수 필요수량을 산정하였다. 다섯째, 저수지 일 물수지 모형을 구축하여, 저수량 일별 모의에 의해 적정 댐 저수지 규모를 결정하였다. 여섯째, 국내 농업용 저수지의 실적 공사비 내역 자료를 참고하여 합리적 수준의 개략 공사비와 총 사업비를 산출하였다. 일곱째, 최적 저수지 위치와 규모로 유역면적 $739.57km^2$인 위치와 만수위 EL. 1,660 m, 총 저수량 3,529만 $m^3$인 규모를 제시하였다.

  • PDF

Measurement and estimation of transpiration from an evergreen broad-leaved forest in japan

  • Hirose, Shigeki;Humagai, Tomo′omi;Kumi, Atsushi;Takeuchi, Shin′ichi;Otsuki, Kyoichi;Ogawa, Shigeru
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.52-59
    • /
    • 2001
  • Methods to measure and estimate transpiration of a forest composed of evergreen broad-leaved trees (Pasania edulis Makino) are studied. Heat pulse velocity has been measured along with soil moisture and micrometeorological factors at the Fukuoka Experimental Forest, the Research Institute of Kyushu University Forests in Fukuoka, Japan (33$^{\circ}$38'N, 130$^{\circ}$31'E, alt. 75m). Tree cutting measurement was conducted to convert the heat pulse velocity into sap flow and transpiration. A big leaf model to calculate transpiration and Interception loss is examined and the estimated values are compared with the measured values obtained from the heat pulse measurement. The results show that 1) Pasania edulis Makino posessing radial pore structure had relatively high water content and high heat pulse velocity even within the central part of the stem near the pith, 2) the heat pulse velocity was well correspond to the water uptake in the tree cutting measurement, 3) the estimation of sap flow based on the heat pulse velocity is accurate, and 4) the big leaf model using the parameters obtained from measurement of a portable photosynthesis system in one day in summer gives reasonable estimation of transpiration independent of seasons and weather.

  • PDF

Runoff simulation for operation of small urban storm water pumping station under heavy storm rainfall conditions (집중호우 시 도시 소유역 배수펌프장 운영을 위한 강우유출모의)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Sung-Geun;Lee, Chang-No;Kim, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, runoff simulation was carried out in order to derive operational improvement of small urban storm water pumping station under heavy storm rainfall conditions. The flood inflow hydrograph of Guri city heavy storm in July, 2001 was successfully simulated by HEC-HMS, a GIS-based runoff simulation model. For the runoff simulation, ArcView, as an effective GIS tool, was used to provide input data of the model such as land use data, soil distribution data and SCS runoff curve number.

  • PDF

Potential Effects of Urban Growth under Urban Containment Policy on Streamflow in the Gyungan River Watershed, Korea

  • Kim, Jinsoo;Park, Soyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.163-172
    • /
    • 2015
  • This study examined the potential effects of urban growth on streamflow in the Gyungan River watershed, Korea, using urban containment scenarios. First, two scenarios (conservation and development) were established, and SLEUTH model was adapted to predict urban growth into the year 2060 with 20 years interval under two scenarios in the study area. Urban growth was larger under scenario 2, focusing on development, than under scenario 1, focusing on conservation. Most urban growth was predicted to involve the conversion of farmland, forest, and grasslands to urban areas. Streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool (SWAT) model. Each scenario showed distinct seasonal variations in streamflow. Although urban growth had a small effect on streamflow, urban growth may heighten the problems of increased seasonal variability in streamflow caused by other factor, such as climate change. This results obtained in this study provide further insight into the availability of future water resource and can aid in urban containment planning to mitigate the negative effects of urban growth in the study area.

Effects of subbasin spatial scale on runoff simulation using SWAT

  • Tegegne, Getachew;Kim, Youngil;Seo, Seung Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.156-156
    • /
    • 2018
  • The subbasin spatial scale can affect a hydrological simulation result. The objective of this study was to investigate an appropriate subbasin spatial scale for reproducing the different flow phases with the Soil and Water Assessment Tool (SWAT). Moreover, this study addressed the total hydrologic model uncertainty using the Generalized Likelihood Uncertainty Estimation (GLUE) method. The hydrologic modelling uncertainty analysis revealed that the courser subbasin spatial scale provided a relatively better coverage of most of the observations by the 95PPU. On the other hand, the finer subbasin spatial scale produced the best single simulation output closer to the observation. Moreover, most of the observed high flows were enveloped by the 95PPU while this did not happen for the low flows. The overall average performance improvement through an appropriate subbasin spatial scale for reproducing the different flow phases in the Yongdam and Gilgelabay watersheds were found to be 36% and 53%, respectively. It is, therefore, a worth that to put more effort in reproducing the different flow phases by investigating an appropriate subbasin spatial scale to improve our understanding about the frequency and magnitude of the different flow phases.

  • PDF

Shallow landslide susceptibility mapping using TRIGRS

  • Viet, Tran The;Lee, Giha;An, Hyun Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.214-214
    • /
    • 2015
  • Rainfall induced landslides is one of the most devastating natural disasters acting on mountainous areas. In Korea, landslide damage areas increase significantly from 1990s to 2000s due to the increase of both rainfall intensity and rainy days in addition with haphazard land development. This study was carried out based on the application of TRIGRS unsaturated (Transient Rainfall Infiltration and Grid-based Regional Slope stability analysis), a Fortran coded, physically based, and numerical model that can predict landslides for areas where are prone to shallow precipitation. Using TRIGRS combining with the geographic information system (GIS) framework, the landslide incident happened on 27th, July 2011 in Mt. Umyeon in Seoul was modeled. The predicted results which were raster maps showed values of the factors of safety on every pixel at different time steps show a strong agreement with to the observed actual landslide scars in both time and locations. Although some limitations of the program are still needed to be further improved, some soil data as well as landslide information are lack; TRIGRS is proved to be a powerful tool for shallow landslide susceptibility zonation especially in great areas where the input geotechnical and hydraulic data for simulation is not fully available.

  • PDF

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.

Site effect microzonation of Babol, Iran

  • Tavakoli, H.R.;Amiri, M. Talebzade;Abdollahzade, G.;Janalizade, A.
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.821-845
    • /
    • 2016
  • Extensive researches on distribution of earthquake induced damages in different regions have shown that geological and geotechnical conditions of the local soils significantly influence behavior of alluvial areas under seismic loading. In this article, the site of Babol city which is formed up of saturated fine alluvial soils is considered as a case study. In order to reduce the uncertainties associated with earthquake resistant design of structures in this area (Babol city), the required design parameters have been evaluated with consideration of site's dynamic effects. The utilized methodology combines experimental ground ambient noise analysis, expressed in terms of horizontal to vertical (H/V) spectral ratio, with numerical one-dimensional response analysis of soil columns using DEEPSOIL software. The H/V spectral analysis was performed at 60 points, experimentally, for the region in order to estimate both the fundamental period and its corresponding amplification for the ground vibration. The investigation resulted in amplification ratios that were greater than one in all areas. A good agreement between the proposed ranges of natural periods and alluvial amplification ratios obtained through the analytical model and the experimental microtremor studies verifies the analytical model to provide a good engineering reflection of the subterraneous alluviums.