• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.06 seconds

Landslide susceptibility mapping using Logistic Regression and Fuzzy Set model at the Boeun Area, Korea (로지스틱 회귀분석과 퍼지 기법을 이용한 산사태 취약성 지도작성: 보은군을 대상으로)

  • Al-Mamun, Al-Mamun;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • This study aims to identify the landslide susceptible zones of Boeun area and provide reliable landslide susceptibility maps by applying different modeling methods. Aerial photographs and field survey on the Boeun area identified landslide inventory map that consists of 388 landslide locations. A total ofseven landslide causative factors (elevation, slope angle, slope aspect, geology, soil, forest and land-use) were extracted from the database and then converted into raster. Landslide causative factors were provided to investigate about the spatial relationship between each factor and landslide occurrence by using fuzzy set and logistic regression model. Fuzzy membership value and logistic regression coefficient were employed to determine each factor's rating for landslide susceptibility mapping. Then, the landslide susceptibility maps were compared and validated by cross validation technique. In the cross validation process, 50% of observed landslides were selected randomly by Excel and two success rate curves (SRC) were generated for each landslide susceptibility map. The result demonstrates the 84.34% and 83.29% accuracy ratio for logistic regression model and fuzzy set model respectively. It means that both models were very reliable and reasonable methods for landslide susceptibility analysis.

Nonlinear runoff during extreme storms in the Seolma-Cheon watershed

  • Kjeldsen, Thomas Rodding;Kim, Hyeonjun;Jang, Cheolhee;Lee, Hyosang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.235-235
    • /
    • 2015
  • This study investigates the impact of event characteristics on runoff dynamics during extreme flood events observed in a $8.5km^2$ experimental watershed located in South Korea. The 37 most extreme flood events with event rainfall in excess of 50 mm were analysed using an event-based rainfall-runoff model; the Revitalised Flood Hydrograph (ReFH) routinely used for design flood estimation in the United Kingdom. The ReFH model was fitted to each event in turn, and links were investigated between each of the two model parameters controlling runoff production and response time, respectively, and event characteristics such as rainfall depth, duration, intensity and also antecedent soil moisture. The results show that the structure of the ReFH model can effectively accommodate any nonlinearity in runoff production, but that the linear unit hydrograph fails to adequately represent a reduction in watershed response time observed for the more extreme events. By linking the unit hydrograph shape directly to rainfall depth, the consequence of the observed nonlinearity in response time is to increase design peak flow by between 50% for a 10 year return period, and up to 80% when considering the probable maximum flood (PMF).

  • PDF

Spatio-temporal soil moisture estimation using water cloud model and Sentinel-1 synthetic aperture radar images (Sentinel-1 SAR 위성영상과 Water Cloud Model을 활용한 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Sehoon;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.28-28
    • /
    • 2022
  • 본 연구는 용담댐유역을 포함한 금강 유역 상류 지역을 대상으로 Sentinel-1 SAR (Synthetic Aperture Radar) 위성영상을 기반으로 한 토양수분 산정을 목적으로 하였다. Sentinel-1 영상은 2019년에 대해 12일 간격으로 수집하였고, 영상의 전처리는 SNAP (SentiNel Application Platform)을 활용하여 기하 보정, 방사 보정 및 Speckle 보정을 수행하여 VH (Vertical transmit-Horizontal receive) 및 VV (Vertical transmit-Vertical receive) 편파 후방산란계수로 변환하였다. 토양수분 산정에는 Water Cloud Model (WCM)이 활용되었으며, 모형의 식생 서술자(Vegetation descriptor)는 RVI (Radar Vegetation Index)와 NDVI (Normalized Difference Vegetation Index)를 활용하였다. RVI는 Sentinel-1 영상의 VH 및 VV 편파자료를 이용해 산정하였으며, NDVI는 동기간에 대해 10일 간격으로 수집된 Sentinel-2 MSI (MultiSpectral Instrument) 위성영상을 활용하여 산정하였다. WCM의 검정 및 보정은 한국수자원공사에서 제공하는 10 cm 깊이의 TDR (Time Domain Reflectometry) 센서에서 실측된 6개 지점의 토양수분 자료를 수집하여 수행하였으며, 매개변수의 최적화는 비선형 최소제곱(Non-linear least square) 및 PSO (Particle Swarm Optimization) 알고리즘을 활용하였다. WCM을 통해 산정된 토양수분은 피어슨 상관계수(Pearson's correlation coefficient)와 평균제곱근오차(Root mean square error)를 활용하여 검증을 수행할 예정이다.

  • PDF

Development of Distributed Rainfall-Runoff Model by Using GIS and Uncertainty Analysis (I) - Theory and Development of Model - (GIS와 불확실도 해석기법을 이용한 분포형 강우 - 유출 모형의 개발 (I) - 이론 및 모형의 개발 -)

  • Choi, Hyun-Sang;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.329-339
    • /
    • 2004
  • The main objective of this study is to develop a GIS-based two-dimensional model for the simulation of rainfall-runoff process and overland flow of a watershed. The tasks of this study are summarized: to develop a two-dimensional model for overland flow and to construct a rainfall-runoff simulation system linked with GIS. The mathematical formulation of the model incorporates four parts: spatially varied rainfall, spatially distributed infiltration, 1-directional, 4-directional and 8-directional overland flow routing scheme, and one-dimensional channel routing scheme. For the development of stochastic model, Monte Carlo simulation method has been directly integrated into the model. GIS using Arc/Info and ArcView has been applied to prepare the model input data(elevation, soil type, rainfall data, etc.) for a simulation and to demonstrate the simulation results.

Estimation of Diameter and Height Growth Equations Using Environmental Variables (환경인자를 이용한 직경 및 수고생장 모형 추정)

  • Lee, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.351-356
    • /
    • 2009
  • This study purposed to judge potential possibility of building highly precise empirical model using environmental variables. Environmental variables such as altitude, mean annual rainfall, mean annual temperature and organic matter ratio of soil were added to height and diameter model for Chamaecyparis obtusa, and examined accuracy and residuals of prediction model. Improvement in precision was found for the Gompertz polymorphic height model by including mean temperature and altitude as independent variables, while the Gompertz diameter model with annual rainfall and altitude was showed improvement of precision and accuracy. Comparing the improvement of precision between the model before adding environmental variables and the model after adding them, an improvement or some ratio was obtained though it is not obvious. Therefore, there is enough proof that adding environmental variables, which can be easily acquired relatively when considering the difficulties of measurement and budget, into the model as independent variables would improve the accuracy and precision of growth models.

A study of tunnel concrete lining design using the ground-lining interaction model with the interface element (계면요소를 이용한 지반-라이닝 상호작용 모델에 의한 터널 콘크리트 라이닝 연구)

  • Huh, Do-hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.575-586
    • /
    • 2015
  • In NATM tunnel, the Ground-Lining Interaction model(GLI model) had been proposed a one of the numerical analysis as the ground load estimation method of the concrete lining. But this model was not applied with the interface mechanism between the ground and the support member or concrete lining. Therefor in this study, it is implemented as a model for closer than actual states that the interface element applied to the existing GLI model. And the modified GLI formula is proposed with the ground load estimation that is from the numerical results for each ground and rock cover conditions. Based on the numerical results, the ground load acting on concrete lining is reduced to ave. 88~106% in case of IV ground condition and ave. 47~57% in case of weathered soil condition comparing with the existing GLI model. It can be anticipated that the results obtained from this study can be applied to an estimation of the ground load on the concrete lining modeled like as real states, consistent and economical design.

Experimental Study on Hysteresis Phenomena in Porous Media (다공성 매질에서 이력현상에 대한 실험적 연구)

  • 강우영;박재현
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.215-222
    • /
    • 1995
  • The water retention function which has the hysteresis phenomena is required to analyze the Richards equation which is a governing equation of the unsaturated flow, and its hysteresis phenomena has influence upon the characteristics of the unsaturated flow. The accuracy of the published hysteresis models is compared by using experimental data of the water retention function. The apparatus to experiment the hysteresis phenomena on the soil is developed, and experimental data for the main wetting process and the main drying process of the water retention function are obtained. The parameters of the van Genuchten equation are calibrated by using experimentally obtained data. As a result of the comparison of the selected hysteresis models which simulate the main drying curve from the main wetting curve, the Model I-1(Mualem) overestimates and the Model II-1(Mualem) underestimates but the Model III-2(Park and Sonu) similarly estimates the experimental data of the main drying curve.

  • PDF

A Basic Research for the Development of Habitat Suitability Index Model of Pelophylax chosenicus (금개구리 서식지 적합성 지수(HSI) 모델 개발을 위한 기초 연구)

  • Shim, Yun-Jin;Kim, Sun-Ryoung;Yoon, Kwang-Bae;Jung, Jin-Woo;Park, Seon-Uk;Park, Yong-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.1
    • /
    • pp.49-62
    • /
    • 2020
  • This study was conducted as a basic study to develop the HSI(Habitat Suitability Index) model of Pelophylax chosenicus based on the research on the ecological and habitat status of Pelophylax chosenicus and the literature research on the HSI model. The habitat variables of Pelophylax chosenicus are the altitude of the spawning pond, the habitat area, the distance from wetland, the soil(aptitude grade for paddy field), the place for eating such as paddy field and wetlands(land cover) and the distance from Predator(Lithobates catesbeianus) distribution area. Based on the existing literature of Pelophylax chosenicus, the results of field surveys and expert opinions, the SI(Suitability Index) model and HSI model were developed and applied to the site to examine the applicability of the HSI model. As a result of application, SI 4 and SI 5 with varying SI values seem to have a major influence on the HSI. In addition, it is considered that the HSI model is an arithmetic mean of SI models, which has a major impact on HSI. The HSI model can be an important basis for the habitat evaluation and restoration model of Pelophylax chosenicus. In particular, it is highly applicable to the selection and evaluation of alternative habitats for Pelophylax chosenicus.

Regionalized Regression Model for Monthly Streamflow in Korean Watersheds (韓國河川의 月 流出量 推定을 위한 地域化 回歸模型)

  • Kim, Tai-Cheol;Park, Sung-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.106-124
    • /
    • 1984
  • Monthly streanflow of watersheds is one of the most important elements for the planning, design, and management of water resources development projects, e.g., determination of storage requirement of reservoirs and control of release-water in lowflow rivers. Modeling of longterm runoff is theoretically based on water-balance analysis for a certain time interval. The effect of the casual factors of rainfall, evaporation, and soil-moisture storage on streamflow might be explained by multiple regression analysis. Using the basic concepts of water-balance and regression analysis, it was possible to develop a generalized model called the Regionalized Regression Model for Monthly Streamflow in Korean Watersheds. Based on model verification, it is felt that the model can be reliably applied to any proposed station in Korean watersheds to estimate monthly streamflow for the planning, design, and management of water resources development projects, especially those involving irrigation. Modeling processes and properties are summarized as follows; 1. From a simplified equation of water-balance on a watershed a regression model for monthly streamflow using the variables of rainfall, pan evaporation, and previous-month streamflow was formulated. 2. The hydrologic response of a watershed was represented lumpedly, qualitatively, and deductively using the regression coefficients of the water-balance regression model. 3. Regionalization was carried out to classify 33 watersheds on the basis of similarity through cluster analysis and resulted in 4 regional groups. 4. Prediction equations for the regional coefficients were derived from the stepwise regression analysis of watershed characteristics. It was also possible to explain geographic influences on streamflow through those prediction equations. 5. A model requiring the simple input of the data for rainfall, pan evaporation, and geographic factors was developed to estimate monthly streamflow at ungaged stations. The results of evaluating the performance of the model generally satisfactory.

  • PDF

Construction of Database for Application of APEX Model in Korea and Evaluation of Applicability to Highland Field (APEX 모델의 국내 적용을 위한 데이터베이스 구축 및 고랭지 밭에 대한 적용성 평가)

  • Koo, Ja-Young;Kim, Jonggun;Choi, Soon-Kun;Kim, Min-Kyeong;Jeong, Jaehak;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.89-100
    • /
    • 2017
  • The Agricultural Policy/Environmental eXtender (APEX) model was developed to extend EPIC's capabilities of simulating land management impacts for small-medium watershed and heterogeneous farms. APEX is a flexible and dynamic tool that is capable of simulating a wide array of management practices, cropping systems, and other land uses across a broad range of agricultural landscapes. APEX have its own agricultural environmental database including operation schedule, soil property, and weather data etc., by crops. However, agriculture environmental informations the APEX model has is all based on U.S. As this can cause malfunction or improper simulation while simulating highland field. In this study, database for APEX model to be utilized for South Korea established with 44,814 agriculture fields in Pyeongchang-gun, Korea from 2007 to 2016. And assessed domestic applicability by comparing T-P unit load criteria presented by National Institution of Environmental Research and result of APEX model. As a result of APEX model simulation, average T-P value for decade was 6.18. Average T-P of every year except 2011 was in range of 5.37~10.43 and this is being involved into criteria presented by National Institution of Environmental Research. It is analyzed that adjusting slope factor can make the model applicable for domestic agricultural environment.