• Title/Summary/Keyword: soil medium

Search Result 1,500, Processing Time 0.028 seconds

Horizontal pullout capacity of a group of two vertical plate anchors in clay

  • Bhattacharya, Paramita;Kumar, Jyant
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.299-312
    • /
    • 2013
  • The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load ($P_{uT}$) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.

In vitro Regeneration of Phragmites australis through Embryogenic Cultures

  • Lee Jeong-Sun;Kim Chang-Kyun;Kim In-Sung;Lee Eun-Ju;Choi Hong-Keun
    • Journal of Plant Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Phragmites australis (reed) has received much attention as being one of the principle emergent aquatic plants for treating industrial and civil wastewater. Plant regeneration via plant tissue culture in p. australis was investigated. Three types of callus were identified from seeds on N6 medium plus 4.5 UM 2,4-dichlorophenoxyacetic acid (2,4-D). Yellow compact type showed the best redifferentiation, whereas white compact type and yellow friable were not competent to differentiate into plane. Solid medium culture was better than liquid suspension culture for enhancing callus growth when N6 medium supplemented with 4.5 ${\mu}M$ 2,4-D was used. Phytagel, as a gelling agent, was superior to agar in plant regeneration on N6 medium, supplemented with 9.4 ${\mu}M$ kinetin and 0.54 ${\mu}M$ $\alpha$-naphthaleneacetic acid (NAA). Transfer of the plantlets regenerated from kinetin and NAA-supplemented N6 medium to growth regulator-free MS medium enhanced the further development of the plantlets. Plantlets on subsequently grown to maturity when tansferred to potting soil. The regenerated plants exhibited morphologically normal. The system for plant regeneration of P. australis enables to propagate elite lines on a large scale for water purification in the ecosystem

Micropropagation of Medicinal Woody Eleutherococcus pedunculus via Somatic Embryogenesis

  • Choi, Yong Eui
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.1
    • /
    • pp.5-9
    • /
    • 2007
  • Zygotic embryos just after harvest of seeds were immature globular to heart stage. Maturation of zygotic embryos rapidly proceed when zygotic embryos together with small excised parts of endosperm were cultured on 1/3-strength MS solid medium with 2% sucrose, and the zygotic embryos were germinated within two months. Embryogenic callus was formed from the excised segments of germinating zygotic embryos of Eleutherococcus pedunclus on Murashige and Skoog (MS) medium with $4.5{\mu}M$ 2,4-D. The embryogenic callus formation occurred at a low frequency (less than 7%) from hypocotyl segments. The embryogenic calli were maintained on the same medium as primary medium. High frequency somatic embryogenesis was obtained after the cells were transferred to medium lacking 2,4-D. Cotyledonary embryos were germinated and converted into plantlets on medium with $20{\mu}M$ $GA_3$. Embryogenic callus and somatic embryos were produced spontaneously on the surfaces of roots and/or hypocotyls of plantlets. The frequency of embryogenic callus formation was 85% in roots and 34% in hypocotyls. Therefore maintain of cell lines performed very easily. Plantlets with developed epicotyls at more than 3 cm acclimatized at high frequency (89%). While plantlets with small epicotyls (less than 1 cm) were acclimatized at low rate (32%). The soil survived plantlets produced new sprouts after over wintering in the field.

  • PDF

Evaluation of Field Application of Soil Conditioner and Planting Chrysanthemum zawadskii on the Roadside Soils Damaged by Deicing Agents

  • Yang, Ji;Lee, Jae-Man;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.625-636
    • /
    • 2020
  • Background and objects: Soil contamination caused by CaCl2 that is used to deice slippery roads in winter is now recognized as one of the major causes of damage of roadside plants. The aim of this study is to identify the salt mitigation effects of planting Chrysanthemum zawadskii and using a soil conditioner. Methods: The study was conducted at the site where Pinus densiflora f. multicaulis was planted on the roadside between Konkuk University Sageori and Danwol Samgeori located in Chungju-si. We classified the soils collected from the field experimental site according to the degree of the damage caused by deicing agents and divided the site into six blocks of three 80 × 80 cm plots replicated by treatment type. Three selected plots were treated with loess-balls on the soil surface (high salinity with loess-balls, medium salinity with loess-balls, low salinity with loess-balls) and three were left as an untreated control (H = high salinity, M = medium salinity, L = low salinity). The soil properties were measured including pH, EC and exchangeable cations as well as the growth of Chrysanthemum zawadskiia. Results: In the results of soil analysis, pH before planting Chrysanthemum zawadskiia was 6.39-6.74 and in September, five months after planting, the acidity was reduced to 5.43-5.89. Electrical conductivity (EC) was measured to be H > M > L with the higher degree of damage by deicing agents. The analysis of deicing exchangeable cations showed that the content of Ca2+ of soils were significantly correlated to deicing exchangeable cations (Ca2+, Na+, Mg2+) in the shoot part of Chrysanthemum zawadskii. The loess-ball treatment showed a lower content of deicing exchangeable cations than the treatment where Chrysanthemum zawadskiia was planted. Conclusion: In this study, the use of a new system made of loess-balls is proposed as a soil conditioner to protect soils from the adverse effects of road deicing salts. These data suggest that treatment of soil conditioners and planting Chrysanthemum zawadskiia are effective in mitigation of salt stress on the soils damaged by deicing agents.

Optimum Seeding Rate in Different to Soil Salinity for Broadcasting on the Rice Flooded Paddy Surface at South-western Reclaimed Saline Land of Korea (서남부 간척지에서 벼 담수표면산파재배시 토양 염농도별 적정 파종량)

  • Back, Nam-Hyun;Choi, Weon-Young;Ko, Jong-Cheol;Park, Hong-Kyu;Nam, Jeong-Kweon;Park, Kwang-Geun;Kim, Sang-Su;Kim, Bo-Kyeong;Kim, Choung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.47-51
    • /
    • 2006
  • This study was conducted to establish the optimum seeding rate in different soil salinity level for yield stability of broadcasting on flooded paddy surface to the reclaimed saline land of south-western part at Gyehwado substation of the Honam Agricultural Research institute in $2003{\sim}2004$. Soeganbyeo was tested in the Munpo series (fine sand loam) the results obtained is as follows: As seeding rate was higher, the number of seeding stand was increased and the number of seeding stands in the low salinity field is sharply increased than those of the medium salinity field. The length of culm in medium salinity field tends to be shorter than that of the low salinity field and as seeding rate was increased, the lodging is severe. The milled rice yield was increased as up to 9 kg/10a in low and medium salinity soil. Complete rice was no significantly increased over 5 kg/10a seeding rate in low salinity field and over 7 kg/10a seeding rate in medium salinity field. Considering the yield of milled and complete rice, seeding stand and lodging, The proper seeding rate is $5{\sim}7kg/10a$ in low salinity and $7{\sim}9kg/10a$ in medium salinity for broadcasting on flooded paddy surface at the reclaimed saline land of southwestern part.

High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius

  • Kim, Jong Youn;Adhikari, Prakash Babu;Ahn, Chang Ho;Kim, Dong Hwi;Kim, Young Chang;Han, Jung Yeon;Kondeti, Subramanyam;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.38-48
    • /
    • 2019
  • Background: Interspecific ginseng hybrid, Panax ginseng ${\times}$ Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. Methods: Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with $GA_3$ to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. Results: We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L $GA_3$ for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The $F_1$ hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides $F_{11}$ in P. quinquefolius), and higher amount of other ginsenosides than its parents. Conclusion: Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.

Several Factors Affecting on In vitro Culture of Prothallus and Ex Vitro Sporophyte Formation from Prothallus of Dyropteris varia (L.) O. Kuntze (족제비고사리 전엽체의 기내배양 및 기외 포자체 형성에 미치는 제요인)

  • Jeong Jin-A;Lee Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.252-258
    • /
    • 2006
  • The most effective conditions of In vitro culture and ex vitro sporophyte formation from prothallus were studied for mass propagation of Dyropteris varia. The most effective medium of prothallus proliferation was Murashige and Skoog's basal medium supplemented with 10:50mM of $NH_4^+:NO_3^-$ and 2% sucrose. The optimum pH level was 5.8 and prothallus growth was promoted on medium containing $0.6{\sim}0.8%$ agar. Almost of the tested growth regulators (NAA, IAA, 2,4-D, BAP, kinetin and 2ip) were inhibitory in prothallus proliferation as the concentration of growth regulators became higher. The highest number of sporophytes was obtained by transplanting prothallus on compost only than on any other soil compositions. Sporophyte formation was promoted remarkably by soaking prothallus with $100{\mu}M\;GA_3$ for 3 hours.

Effects on amplification of strong ground motion due to deep soils

  • Jakka, Ravi S.;Hussain, Md.;Sharma, M.L.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.663-674
    • /
    • 2015
  • Many seismically vulnerable regions in India and worldwide are located on deep soil deposits which extend to several hundred meters of depth. It has been well recognized that the earthquake shaking is altered by geological conditions at the location of building. As seismic waves propagates through uppermost layers of soil and rock, these layers serve as filter and they can increase the duration and amplitude of earthquake motion within narrow frequency bands. The amplification of these waves is largely controlled by mechanical properties of these layers, which are function of their stiffness and damping. Stiffness and damping are further influenced by soil type and thickness. In the current study, an attempt has been made to study the seismic site response of deep soils. Three hypothetical homogeneous soil models (e.g., soft soil, medium soil and hard soil) lying on bedrock are considered. Depth of half space is varied from 30 m to 2,000 m in this study. Controlled synthetic motions are used as input base motion. One dimensional equivalent linear ground response analyses are carried out using a computer package DEEPSOIL. Conventional approach of analysing up to 30 m depth has been found to be inadequate for deep soil sites. PGA values are observed to be higher for deeper soil profiles as compared to shallow soil profiles indicating that deeper soil profiles are more prone to liquefaction and other related seismic hazards under earthquake ground shaking. The study recommends to deal the deeper soil sections more carefully for estimating the amplification factors for seismic hazard assessment at the surface.

Assessment of planting soil temperature and growing degree day impacts on silage corn (Zea mays L.) biomass

  • Moonju Kim;Jiyung Kim;Mu-Hwan Jo;Kyungil Sung;Kun-Jun Han
    • Journal of Animal Science and Technology
    • /
    • v.66 no.5
    • /
    • pp.949-961
    • /
    • 2024
  • The annual forage crop production system, enclosing silage corn (Zea mays L.) and following cool-season annual forage, can enhance forage production efficiency where available land is limited for pasture production. In this forage production system, successful silage corn cultivation has a significant value due to the great yield of highly digestible forage. However, some untimely planting or harvesting of corn due to changing weather often reduces biomass and feeding values. Therefore, a study was conducted to quantify the corn silage biomass reductions by the deviations from optimum planting soil temperature and optimum growing degree day (GDD). The approximations of maximum corn production were estimated based on field trial data conducted between 1978 and 2018 with early, medium, and late-maturity corn groups. Based on weather data, the recorded planting dates and harvest dates were converted into the corresponding trials' soil temperatures at planting (STP) and the GDD. The silage corn biomass data were regressed against STP and GDD using a quadratic function. The maximum biomass point was modeled in a convex upward quadratic yield curve and the optimum STP and GDD were defined as those values at the maximum biomass for each maturity group. Optimized STP was at 16.6℃, 16.2℃, and 15.6℃ for early, medium, and late maturity corn groups, respectively, while optimized GDD at harvest was at 1424, 1363, and 1542℃. The biomass reductions demonstrated quadratic functions by the departures of STP or GDD. The 5% reductions were anticipated when STP departed from the optimum temperature by 2.2℃, 2.4℃, and 1.4℃ for early, medium, and late maturity corns, respectively; the same degree of reductions were estimated when the GDD departed by 200, 180, and 130℃ in the same order of the maturity groups. This result indicates that biomass reductions of late-maturity corn were more sensitive to the departures of STP or GDD than the early-maturity corn. Therefore, early maturing cultivars are more stable in biomass production in a silage corn-winter annual forage crop production system to enhance forage-based livestock production efficiency.

Development of Hybrid Remediation Method for Contaminated Soils with Zinc or Arsenic and Diesel (아연 또는 비소와 경유로 오염된 토양의 복합정화공법 개발)

  • Kim, Hye-Young;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.13-20
    • /
    • 2010
  • The purpose of this study was to develope the remediation method of contaminated soils with metals and petroleum. The diesel degrading strain was isolated and identified from the soil contaminated by petroleum at industrial sites. Diesel biodegradation experiment was performed by diesel degrading bacteria in both solution and soil slurry. Contaminated soils by Zn or As and diesel were treated consecutively by steam-vapor extraction, biodegradation, and acid washing. The strain was identified as Pseudomonas aeruginosa, and named as Pseudomonas aeruginosa TPH1. The optimal culture conditions of TPH1 were $20^{\circ}C$ and pH 7.0, 3% of diesel concentration. Biodegradation of diesel was performed using the separated strain in liquid medium, and 63% of diesel was degraded in 72 hours. And 52% of diesel was removed in the tested soils. In the treatment of contaminated soils with diesel and Zn or As, 29% ~ 44% of diesel was reduced by steamvapor extraction, 60% ~ 71% of diesel was removed after biodegradation. 47% of Zn and 96% of As were removed after acid(mixture of sulfuric and oxalic acids) washing. It is recommended that consecutive treatment method of steam-vapor extraction, biodegradation and acid washing is effective for remediation of complex contaminated soils with metals and petroleum.