• Title/Summary/Keyword: soil groups

Search Result 773, Processing Time 0.024 seconds

Advances in Soil Microbial Ecology and the Ecocollections

  • Whang Kyung-Sook
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.81-85
    • /
    • 2002
  • Oligotrophic bacteria isolated from forest soil showed a specific community consisting of various taxonomic groups compared with those in other soil or aquatic habitats. Based on the cell shape, the isolates were divided into four groups: regular rod, curved/spiral rod, irregular rod, and prosthecate bacteria. The cellular fatty acids 60 oligotrophic isolates were analyzed. At the dendrogram based on cellular fatty acid composition, four clusters(I-IV) were separated at a euclidian distance of about 50. Based on the 16S rDNA sequence analysis, the two representative strains(MH256 and MA828) of cluster 3 showed the close relation to genera, Xathomonas/Stenotrophomonas, but were not included in these genera. The isolates with Q-10 were also studied. They are corresponded to the two large groups in Proteobacteria alpha subdivision. One was incorporated in the genus Bradyrhizobium cluster, which also includes Agromonas, a genus for oligotrophic bacteria. The strains of the other group showed high similarity to the genus Agrobacterium. We attempted to screening of bioactive compounds from oligotrophs which was isolated from forest soil. The active compounds were analyzed by mass and NMR spectrum, one of them identified as crisamicin A. Another one designated as SAPH is a new compound. The results indicate that there were possibilities for finding new compounds from the rare microorganisms such as oligotrophs.

  • PDF

Microbial Community Structure of the Active Layer Soil from Resolute, Canadian High Arctic

  • Kim, Ok-Sun;Kim, Hye Min;Lee, Hong Kum;Lee, Yoo Kyung
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • Permafrost is frozen soil below $0^{\circ}C$ for two or more years. Surface of permafrost is called as active layer that seasonally thaws during the summer. Although the thawing of permafrost may deepen the active layer and consequently increase the microbial activity, the microbial community structure in this habitat has not yet been well described. In this study, we presented bacterial and archaeal diversity in the active layer soil from Resolute, Canada using pyrosequencing analysis. The soil sample was collected from the surface of the marsh covered with moss and Carex. A total of 7,796 bacterial reads for 40 phyla and 245 archaeal reads for 4 phyla were collected, reflecting the high diversity of bacteria. Predominant bacterial groups were Proteobacteria (37.7%) and Bacteroidetes (30.0%) in this study. Major groups in Archaea were Euryarchaeota (51.4%) and Thaumarchaeota (46.1%). Both methane producing archaea and consuming bacteria were detected in this study. Although it might be difficult to characterize microbial community with only one sample, it could be used for the basis of assessing the relative importance of the specific groups with a high resolution on the bacterial and archaeal community in this habitat.

Chytrid Distribution in Diverse Boreal Manitoba Sites

  • Lee, Eun-Ju
    • Animal cells and systems
    • /
    • v.4 no.1
    • /
    • pp.57-62
    • /
    • 2000
  • Soil samples were collected in thirteen Manitoba boreal forest sites. Spatial distribution of chytrids from diverse boreal forest microhabitats was investigated by baiting with jack pine pollen. After baiting, the pollen was surveyed for chytrids for 8 ten day period and individual species were counted. Total infestations of pollen by chytrids ranged from 5.8% to 90.2% from various soils. Each site with high infestation was characterized by litter with high needle content while mineral soil or soil with limited organic matter yielded low levels of pollen infestation. Species diversity tended to be higher in soils with higher pollen infestation and lower in soils with lower pollen infestation. Lower diversity was generally observed in mineral soils or soils with a limited organic horizon comprised, in part, of broad leaf litter. Based on coefficients of association and species in common among species across the collection sites, it was possible to relate dominant species assemblages in site groups. These species assemblages in the site groups suggest that the chytrids are distributed by litter and soil types. It can be concluded that the substratum characteristics of litter types and availability of litter may be important in describing chytrid distribution in boreal forest sites.

  • PDF

On the Surface Moisture Availability Parameters to Estimate the Surface Evaporation (증발량 추정을 위한 지표면 가용 수분 계수)

  • Jin, Byoung-Hwa;Hwang, Soo-Jin
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.41-41
    • /
    • 1995
  • In order to discuss the differences among the SMP(Surface Moisture Availability Parameter), by previous researchers on the basis of their own theoretical and empirical background, we assessed the SMP according to the soil types and volumetric soil water contents. The results are as follows. There are differences among all the five SMAPs. There''s a tendency that the larger grain size, the higher value of parameters. And they divided into two groups for their value: one group has parameters with exponential function and the other with cosine and linear function. The maximum difference between the two groups appears when the volumetric soil water contents are 0.07$m^3m^{-3}$ for sand, 0.l1$m^3m^{-3}$ for loam, 0.12 for clay, and 0.13$m^3m^{-3}$ for silt loam. So, these differences must be considered when we estimate the surface evaporation rate. From field data, the paddy field soil around Junam reservoir is classified as a silt has high wetness, 0.56. So, the parameter obtained from the field measurement is much higher than that of Clapp and Hornberger(1978)''s Table. This study treated the SMP for a certain point of time in winter season. But if we measured the soil water contents continuously, we could obtain better time-dependent parameter.

Interactive analysis of a building fame resting on pile foundation

  • Chore, H.S.
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.367-384
    • /
    • 2014
  • The study deals with the physical modeling of a typical single storeyed building frame resting on pile foundation and embedded in cohesive soil mass using the finite element based software SAP-IV. Two groups of piles comprising two and three piles, with series and parallel arrangement thereof, are considered. The slab provided at top and bottom of the frame along with the pile cap is idealized as four noded and two dimensional thin shell elements. The beams and columns of the frame, and piles are modeled using two noded one dimensional beam-column element. The soil is modeled using closely spaced discrete linear springs. A parametric study is carried out to investigate the effect of various parameters of the pile foundation, such as spacing in a group and number of piles in a group, on the response of superstructure. The response considered includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase the displacement in the range of 38 -133% and to increase the absolute maximum positive and negative moments in the column in the range of 2-12% and 2-11%. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in this study. The results obtained are compared further with those of Chore et al. (2010), wherein different idealizations were used for modeling the superstructure frame and sub-structure elements (foundation). While fair agreement is observed in the results in either study, the trend of the results obtained in both studies is also same.

The Response of a Single Pile and Pile Groups to Tunnelling Performed in Weathered Rock (풍화암에서 실시된 터널굴착으로 인한 단독말뚝 및 군말뚝의 거동)

  • Lee, Cheol Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.199-210
    • /
    • 2012
  • The effects of tunnelling in weak weathered rock on the behaviour of a pre-existing single pile and pile groups ($3{\times}3$ and $5{\times}5$ pile groups) above a tunnel have been studied by carrying out three-dimensional (3D) elasto-plastic numerical analyses. Numerical modelling of such effects considers the response of the single pile and pile groups in terms of tunnelling-induced ground and pile settlement as well as changes of the shear transfer mechanism at the pile-soil interface due to tunnelling. Due to changes in the relative shear displacement between the pile and the soil at the pile-soil interface with tunnel advancement, the shear stresses and axial pile force distributions along the pile change drastically. Based on the computed results, upward shear stresses are induced up to about Z/L=0.775 from the pile top, while downward shear stresses are mobilised below Z/L=0.775, resulting in a reduction in the axial pile force distribution with depth equivalent to a net increase in the tensile force on the pile. A maximum tensile force of about $0.36P_a$ developed on the single pile solely due to tunnelling, where $P_a$ is the service axial pile loading prior to tunnelling. The degree of interface shear strength mobilisation at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. Overall it has been found that the larger the number of piles, the greater is the effect of tunnelling on the piles in terms of pile settlement, while changes of the axial pile forces for the piles in the groups are smaller than for a single pile due to the shielding effect. The reduction of apparent allowable pile capacity due to tunnelling-induced pile head settlement was significant, in particular for piles inside the groups.

Monitoring of Bacterial Community in a Coniferous Forest Soil After a Wildfire

  • Kim Ok-Sun;Yoo Jae-Jun;Lee Dong-Hun;Ahn Tae-Seok;Song Hong-Gyu
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.278-284
    • /
    • 2004
  • Changes in the soil bacterial community of a coniferous forest were analyzed to assess microbial responses to wildfire. Soil samples were collected from three different depths in lightly and severely burned areas, as well as a nearby unburned control area. Direct bacterial counts ranged from $3.3­22.6\times10^8\;cells/(g{\cdot}soil).$ In surface soil, direct bacterial counts of unburned soil exhibited a great degree of fluctuation. Those in lightly burned soil changed less, but no significant variation was observed in the severely burned soil. The fluctuations of direct bacterial count were less in the middle and deep soil lay­ers. The structure of the bacterial community was analyzed via the fluorescent in situ hybridization method. The number of bacteria detected with the eubacteria-targeted probe out of the direct bacterial count varied from $30.3\;to\;84.7\%,$ and these ratios were generally higher in the burned soils than in the unburned control soils. In the surface unburned soil, the ratios of $\alpha,\;\beta\;and\;gamma-proteobacteria,$ Cytoph­aga-Flavobacterium group, and other eubacteria groups to total eubacteria were 9.9, 10.6, 15.5, 9.0, and $55.0\%,$ respectively, and these ratios were relatively stable. The ratios of $\alpha,\;\beta\;and\;gamma-proteobacteria,$ and Cytophaga-Flavobacterium group to total eubacteria increased immediately after the wildfire, and the other eubacterial proportions decreased in the surface and middle layer soils. By way of contrast, the composition of the 5 groups of eubacteria in the subsurface soil exhibited no significant fluctuations dur­ing the entire period. The total bacterial population and bacterial community structure disturbed by wildfire soon began to recover, and original levels seemed to be restored 3 months after the wildfire.

Canonical Correspondence Analysis(CCA) on the Forest Vegetation of Mt. Togyu National Park, Korea (Canonical Correspondence Analysis(CCA)에 의한 덕유산 국립공원의 삼림식생분석)

  • 김창환;길봉섭
    • The Korean Journal of Ecology
    • /
    • v.20 no.2
    • /
    • pp.125-132
    • /
    • 1997
  • A study of forest vegetation in Mt. $T\v{o}kyu$ National Park was investigated by ordination technique. By TWINSPAN(Two-Way Indicator Species Analysis) method, 10 groups were recognized as follows: pinus densiflora, Quercus variabilis, Quercus serrata, Quercus mongolica-Rhododendron schlippenbachii, Quercus mongolica-Abies koreana, Quercus mongolica-Acer pseudo-sieboldi-amum, Quercus mongolica-Symplocos chinensis for. pilosa, Carpinus laxiflora, Fraxinus mandshurica and Taxus cuspidata groups. The floristic composition of these groups showed high correlation to soil moisture(r=0.831), altitude(r=0.784), topography(r=-0.722), organic matter(r=0.642), and pH(r=-0.509) among various environmental factors. According to the results of CCA(Canonical Correspondence Analysis) Pinus densiflora group and Quercus variabilis group were situated in a xeric area at a lower altitude where soil nutrients were poor compared with the other groups. Fraxinus mandshurica group was distributed throughout the valley with high soil moisture and good nutrients, Quercus serrata group and Carpinus laxiflora group were found in the low altitude region with good nutrients, Quercus mongolica group, at the high altitude region with good nutrients, and Quercus mongolica-Acer koreana and Taxus cuspidata at higher altitudes(1, 400-1600 m).

  • PDF

Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds

  • Farghaly, Ahmed Abdelraheem
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1293-1309
    • /
    • 2015
  • 3D two adjacent buildings with different heights founded in different kinds of soil connected with viscous dampers groups, with especial arrangement in plane, were investigated. Soil structure interaction for three different kinds of soil (stiff, medium and soft) were modeled as 3D Winkler model to give the realistic behavior of adjacent buildings connected with viscous dampers under various earthquake excitations taking in the account the effect of different kinds of soil beneath the buildings, using SAP2000n to model the whole system. A range of soil properties and soil damping characteristics are chosen which gives broad picture of connected structures system behavior resulted from the influence soil-structure interaction. Its conclusion that the response of connected structures system founded on soft soil are more critical than those founded on stiff soil. The behavior of connected structures is different from those with fixed base bigger by nearly 20%, and the efficiency of viscous dampers connecting the two adjacent buildings is reduced by nearly 25% less than those founded on stiff soil.