• 제목/요약/키워드: soil fungal communities

검색결과 47건 처리시간 0.021초

Diversity of Fungi in Soils with Different Degrees of Degradation in Germany and Panama

  • Rosas-Medina, Miguel;Macia-Vicente, Jose G.;Piepenbring, Meike
    • Mycobiology
    • /
    • 제48권1호
    • /
    • pp.20-28
    • /
    • 2020
  • Soil degradation can have an impact on the soil microbiota, but its specific effects on soil fungal communities are poorly understood. In this work, we studied the impact of soil degradation on the richness and diversity of communities of soil fungi, including three different degrees of degradation in Germany and Panama. Soil fungi were isolated monthly using the soil-sprinkling method for 8 months in Germany and 3 months in Panama, and characterized by morphological and molecular data. Soil physico-chemical properties were measured and correlated with the observed values of fungal diversity. We isolated a total of 71 fungal species, 47 from Germany, and 32 from Panama. Soil properties were not associated with fungal richness, diversity, or composition in soils, with the exception of soil compaction in Germany. The geographic location was a strong determinant of the soil fungal species composition although in both countries there was dominance by members of the orders Eurotiales and Hypocreales. In conclusion, the results of this work do not show any evident influence of soil degradation on communities of soil fungi in Germany or Panama.

Bacterial and Fungal Communities in Bulk Soil and Rhizospheres of Aluminum-Tolerant and Aluminum-Sensitive Maize (Zea mays L.) Lines Cultivated in Unlimed and Limed Cerrado Soil

  • Mota, Da;Faria, Fabio;Gomes, Eliane Aparecida;Marriel, Ivanildo Evodio;Paiva, Edilson;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.805-814
    • /
    • 2008
  • Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.

Comparison of Soil Higher Fungal Communities between Dead and Living Abies koreana in Mt. Halla, the Republic of Korea

  • Kim, Chang Sun;Jo, Jong Won;Lee, Hyen;Kwag, Young-Nam;Cho, Sung Eun;Oh, Seung Hwan
    • Mycobiology
    • /
    • 제48권5호
    • /
    • pp.364-372
    • /
    • 2020
  • To improve our understanding of the relationship between soil higher fungi (belonging to Ascomycota and Basidiomycota) and Abies koreana, we surveyed A. koreana soil fungal communities in a forest in Mt. Halla, Jeju Island, Korea by next-generation sequencing (Illumina Miseq). To confirm the soil higher fungal communities, we collected two types of soils from a defined plot: soils with dead (AKDTs) and living A. koreana (AKLTs), respectively. Soil fungi were classified into 2 phyla, 19 classes, 64 orders, 133 families, 195 genera, and 229 OTUs (895,705 sequence reads). Nonmetric multidimensional scaling (NMDS) showed significantly different soil higher fungal communities between AKDTs and AKLTs (p < .05). In addition, the saprophyte composition was significantly affected by A. koreana status (p < .05). The proportion of the mycorrhizal Clavulina spp. was different between soils with AKDTs and AKLTs, suggesting that Clavulina spp. may be a crucial soil fungal species influencing A. koreana. This study will lead to a better understanding of the ecological status of A. koreana in Mt. Halla. In addition, this study could be useful for the conservation and management of A. koreana habitats.

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan

  • Zheng, Yuanxian;Wang, Jiming;Zhao, Wenlong;Cai, Xianjie;Xu, Yinlian;Chen, Xiaolong;Yang, Min;Huang, Feiyan;Yu, Lei;He, Yuansheng
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.203-211
    • /
    • 2022
  • Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.

Guild Patterns of Basidiomycetes Community Associated With Quercus mongolica in Mt. Jeombong, Republic of Korea

  • Oh, Seung-Yoon;Cho, Hae Jin;Eimes, John A.;Han, Sang-Kuk;Kim, Chang Sun;Lim, Young Woon
    • Mycobiology
    • /
    • 제46권1호
    • /
    • pp.13-23
    • /
    • 2018
  • Depending on the mode of nutrition exploitation, major fungal guilds are distinguished as ectomycorrhizal and saprotrophic fungi. It is generally known that diverse environmental factors influence fungal communities; however, it is unclear how fungal communities respond differently to environment factors depend on fungal guilds. In this study, we investigated basidiomycetes communities associated with Quercus mongolica using 454 pyrosequencing. We attempted to detect guild pattern (ectomycorrhizal or saprotrophic fungal communities) by comparing the influence of geography and source (root and surrounding soil). A total of 515 mOTUs were detected from root (321) and soil (394) of Q. mongolica at three sites of Mt. Jeombong in Inje County. We found that patterns of diversity and community structure were different depending on the guilds. In terms of alpha diversity, only ectomycorrhizal fungi showed significant differences between sources. In terms of community structure, however, geography significantly influenced the ectomycorrhizal community, while source appeared to have a greater influence on the saprotrophic community. Therefore, a guildbased view will help to elucidates novel features of the relationship between environmental factors and fungal communities.

Metagenomic Analysis of Fungal Communities Inhabiting the Fairy Ring Zone of Tricholoma matsutake

  • Kim, Miae;Yoon, Hyeokjun;You, Young-Hyun;Kim, Ye-Eun;Woo, Ju-Ri;Seo, Yeonggyo;Lee, Gyeong-Min;Kim, Young Ja;Kong, Won-Sik;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권10호
    • /
    • pp.1347-1356
    • /
    • 2013
  • Tricholoma matsutake, an ectomycorrhiza that has mutual relationships with the rootlet of Pinus denisflora, forms a fruiting body that serves as a valuable food in Asia. However, the artificial culture of this fungus has not been successful. Soil fungi, including T. matsutake, coexist with many other microorganisms and plants; therefore, complex microbial communities have an influence on the fruiting body formation of T. matsutake. Here, we report on the structures of fungal communities associated with the fairy ring of T. matsutake through the pyrosequencing method. Soil samples were collected inside the fairy ring zone, in the fairy ring zone, and outside the fairy ring zone. A total of 37,125 sequencing reads were obtained and 728 to 1,962 operational taxonomic units (OTUs) were observed in the sampling zones. The fairy ring zone had the lowest OTUs and the lowest fungal diversity of all sampling zones. The number of OTUs and fungal taxa inside and outside the fairy ring zone was, respectively, about 2 times and 1.5 times higher than the fairy ring. Taxonomic analysis showed that each sampling zone has different fungal communities. In particular, out of 209 genera total, 6 genera in the fairy ring zone, such as Hemimycena, were uniquely present and 31 genera, such as Mycena, Boletopsis, and Repetophragma, were specifically absent. The results of metagenomic analysis based on the pyrosequencing indicate a decrease of fungal communities in the fairy ring zone and changes of fungal communities depending on the fairy ring growth of T. matsutake.

Responses of Soil Bacterial and Fungal Communities to Organic and Conventional Farming Systems in East China

  • Zhang, Hanlin;Zheng, Xianqing;Bai, Naling;Li, Shuangxi;Zhang, Juanqin;Lv, Weiguang
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.441-453
    • /
    • 2019
  • Organic farming is considered an effective form of sustainable agricultural management. However, understanding of soil microbial diversity and composition under long-term organic and conventional farming is still limited and controversial. In this study, the Illumina MiSeq platform was applied to investigate the responses of soil bacterial and fungal diversity and compositions to organic farming (OF) and improved conventional farming (CF, applied straw retention) in the rice-wheat rotation system. The results highlighted that the alpha diversity of microbial communities did not differ significantly, except for higher bacterial diversity under OF. However, there were significant differences in the compositions of the soil bacterial and fungal communities between organic and conventional farming. Under our experimental conditions, through the ecological functional analysis of significant different or unique bacterial and fungal taxonomic members at the phyla and genus level, OF enhanced nitrogen, sulfur, phosphorus and carbon dynamic cycling in soil with the presence of Nodosilinea, Nitrospira, LCP-6, HB118, Lyngbya, GOUTA19, Mesorhizobium, Sandaracinobacter, Syntrophobacter and Sphingosinicella, and has the potential to strengthen soil metabolic ability with Novosphingobium. On the other hand, CF increased the intensity of nitrogen cycling with Ardenscatena, KD1-23, Iamia, Nitrosovibrio and Devosia, but enriched several pathogen fungal members, including Coniochaeta, Corallomycetella, Cyclaneusma, Cystostereum, Fistulina, Curvularia and Dissoconium.

Pyrosequencing and Taxonomic Composition of the Fungal Community from Soil of Tricholoma matsutake in Gyeongju

  • Jeong, Minji;Choi, Doo-Ho;Cheon, Woo-Jae;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.686-695
    • /
    • 2021
  • Tricholoma matsutake is an ectomycorrhizal fungus that has a symbiotic relationship with the root of Pinus densiflora. Soil microbial communities greatly affect the growth of T. matsutake, however, few studies have examined the characteristics of these communities. In the present study, we analyzed soil fungal communities from Gyeongju and Yeongdeok using metagenomic pyrosequencing to investigate differences in fungal species diversity, richness, and taxonomic composition between the soil under T. matsutake fruiting bodies (Sample 2) and soil where the fairy ring of T. matsutake was no longer present (Sample 1). The same spot was investigated three times at intervals of four months to observe changes in the community. In the samples from Yeongdeok, the number of valid reads was lower than that at Gyeongju. The operational taxonomic units of most Sample 2 groups were less than those of Sample 1 groups, indicating that fungal diversity was low in the T. matsutake-dominant soil. The soil under the T. matsutake fruiting bodies was dominated by more than 51% T. matsutake. From fall to the following spring, the ratio of T. matsutake decreased. Basidiomycota was the dominant phylum in most samples. G-F1-2, G-F2-2, and Y-F1-2 had the genera Tricholoma, Umbelopsis, Oidiodendron, Sagenomella, Cladophialophora, and Phialocephala in common. G-F1-1, G-F2-1, and Y-F1-1 had 10 genera including Umbelopsis and Sagenomella in common. From fall to the following spring, the amount of phyla Basidiomycota and Mucoromycota gradually decreased but that of phylum Ascomycota increased. We suggest that the genus Umbelopsis is positively related to T. matsutake.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

Effect of Soil Ameliorators on Ectomycorrhizal Fungal Communities that Colonize Seedlings of Pinus densiflora in Abandoned Coal Mine Spoils

  • Lee, Eun-Hwa;Eo, Ju-Kyeong;Lee, Chang-Seok;Eom, Ahn-Heum
    • Mycobiology
    • /
    • 제40권3호
    • /
    • pp.168-172
    • /
    • 2012
  • In this study, the effect of soil ameliorators on ectomycorrhizal (ECM) fungal communities in coal mine spoils was investigated. Organic fertilizers and slaked lime were applied as soil ameliorators in 3 abandoned coal mine spoils. One year after the initial treatment, roots of Pinus densiflora seedlings were collected and the number of ECM species, colonization rate, and species diversity were assessed. The results showed that the soil ameliorators significantly increased ECM colonization on the roots of P. densiflora. The results suggest that soil ameliorators can have a positive effect on ECM fungi in terms of growth of host plants and show the potential use of soil ameliorator treatment for revegetation with ECM-colonized pine seedlings in the coal mine spoils.