DOI QR코드

DOI QR Code

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan

  • Zheng, Yuanxian (Lincang Company of Yunnan Tobacco Company) ;
  • Wang, Jiming (Lincang Company of Yunnan Tobacco Company) ;
  • Zhao, Wenlong (Lincang Company of Yunnan Tobacco Company) ;
  • Cai, Xianjie (Material Procurement Center, Shanghai Tobacco Group Co., Ltd.) ;
  • Xu, Yinlian (Lincang Company of Yunnan Tobacco Company) ;
  • Chen, Xiaolong (China Tobacco Henan Industrial Co., Ltd.) ;
  • Yang, Min (Kunming University/Yunnan Urban Agricultural Engineering & Technological Research Center) ;
  • Huang, Feiyan (Kunming University/Yunnan Urban Agricultural Engineering & Technological Research Center) ;
  • Yu, Lei (Kunming University/Yunnan Urban Agricultural Engineering & Technological Research Center) ;
  • He, Yuansheng (Lincang Company of Yunnan Tobacco Company)
  • Received : 2022.03.13
  • Accepted : 2022.04.13
  • Published : 2022.06.01

Abstract

Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.

Keywords

Acknowledgement

This study was supported by the Project of China National Tobacco Corporation Yunnan Branch (No. 2020530000242028, 2021530000242023, 2020530000242010) and Shanghai Tobacco Group Co., Ltd.

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Berendsen, R. L., Pieterse, C. M. J. and Bakker, P. A. H. M. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478-486. https://doi.org/10.1016/j.tplants.2012.04.001
  3. Cai, Q., Zhou, G., Ahmed, W., Cao, Y., Zhao, M., Li, Z. and Zhao, A. 2021. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur. J. Plant Pathol. 160:265-276. https://doi.org/10.1007/s10658-021-02237-4
  4. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N. and Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl 1:4516-4522. https://doi.org/10.1073/pnas.1000080107
  5. Chaparro, J. M., Sheflin, A. M., Manter, D. K. and Vivanco, J. M. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48:489-499. https://doi.org/10.1007/s00374-012-0691-4
  6. Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A., Moorhead, L. C. and Patterson, C. M. 2016. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6:1-21.
  7. Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998. https://doi.org/10.1038/nmeth.2604
  8. Garbeva, P., van Veen, J. A. and van Elsas, J. D. 2004. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
  9. He, Y. and Xue, L. 2005. Biological effects of rare earth elements and their action mechanisms. J. Appl. Ecol. 16:1983-1989 (in Chinese).
  10. Huang, K., Jiang, Q., Liu, L., Zhang, S., Liu, C., Chen, H., Ding, W. and Zhang, Y. 2020. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco rootknot nematodes. AMB Express 10:72. https://doi.org/10.1186/s13568-020-01006-6
  11. Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T. and Steinberg, C. 2007. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 39:1-23. https://doi.org/10.1016/j.soilbio.2006.07.001
  12. Kim, B.-S., French, E., Caldwell, D., Harrington, E. J. and IyerPascuzzi, A. S. 2016. Bacterial wilt disease: host resistance and pathogen virulence mechanisms. Physiol. Mol. Plant Pathol. 95:37-43. https://doi.org/10.1016/j.pmpp.2016.02.007
  13. Kinkel, L. L., Bakker, M. G. and Schlatter, D. C. 2011. A coevolutionary framework for managing disease-suppressive soils. Annu. Rev. Phytopathol. 49:47-67. https://doi.org/10.1146/annurev-phyto-072910-095232
  14. Kuang, C. F., He, Z. M., Tang, R. Y., Huang, S. Y. and Deng, F. X. 2003. Determination of microbial number and physiological strains in soil infected with bacterical wilt. Chin. Tob. Sci. 24:43-45 (in Chinese).
  15. Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Loffler, F. E., O'Malley, M. A., Garcia Martin, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R. and McMahon, K. D. 2019. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17:725-741. https://doi.org/10.1038/s41579-019-0255-9
  16. Li, Y. Y., Wang, L., Peng, W. X. and Li, X. H. 2020. Analysis of the changing trend of microbial community in rhizosphere soil during different stages of tobacco bacterial wilt infection. Chin. Tob. Sci. 41:73-78 (in Chinese).
  17. Liu, X. L. 2011. Infection mechanism of Paecilomyces lilacinus strains on Meloidogyne incognita. Ph.D. thesis. Anhui Agricultural University, Hefei, China (in Chinese).
  18. Liu, X., Zhang, S., Jiang, Q., Bai, Y., Shen, G., Li, S. and Ding W. 2016. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci. Rep. 6:36773. https://doi.org/10.1038/srep36773
  19. Liu, Y. X., Li, X., Cao, Y., Ning, L. U. and Shi, J. X. 2014. Field control efficiency of tobacco specific bio-organic fertilizer on tobacco bacterial wilt. J. Plant Nutr. Fertil. 20:1203-1211 (in Chinese).
  20. Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P. and Ramos, L. P. 2008. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 99:1417-1424. https://doi.org/10.1016/j.biortech.2007.01.060
  21. Mendes, L. W., Tsai, S. M., Navarrete, A. A., de Hollander, M., van Veen, J. A. and Kuramae, E. E. 2015. Soil-borne microbiome: linking diversity to function. Microb. Ecol. 70:255-265. https://doi.org/10.1007/s00248-014-0559-2
  22. Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663. https://doi.org/10.1111/1574-6976.12028
  23. Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G. and Renella, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54:655-670. https://doi.org/10.1046/j.1351-0754.2003.0556.x
  24. Navarrete, A. A., Kuramae, E. E., de Hollander, M., Pijl, A. S., van Veen, J. A. and Tsai, S. M. 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol. Ecol. 83:607-621. https://doi.org/10.1111/1574-6941.12018
  25. Philippot, L., Raaijmakers, J. M., Lemanceau, P. and van der Putten, W. H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol.11:789-799. https://doi.org/10.1038/nrmicro3109
  26. Purahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M. J., Kapturska, D., Hofrichter, M., Kruger, D. and Buscot, F. 2016. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. 25:4059-4074. https://doi.org/10.1111/mec.13739
  27. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341-361. https://doi.org/10.1007/s11104-008-9568-6
  28. Raghavendra, A. K. H., Bissett, A. B., Thrall, P. H., Morin, L., Steinrucken, T. V., Galea, V. J., Goulter, K. C. and van Klinken, R. D. 2017. Characterisation of above-ground endophytic and soil fungal communities associated with dieback-affected and healthy plants in five exotic invasive species. Fungal Ecol. 26:114-124. https://doi.org/10.1016/j.funeco.2017.01.003
  29. Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J. C., Cattolico, L., Chandler, M., Choisne, N., Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A., Robert, C., Saurin, W., Schiex, T., Siguier, P., Thebault, P., Whalen, M., Wincker, P., Levy, M., Weissenbach, J. and Boucher, C. A. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497-502. https://doi.org/10.1038/415497a
  30. Sharma-Poudyal, D., Schlatter, D., Yin, C., Hulbert, S. and Timothy, P. 2017. Long-term no-till: a major driver of fungal communities in dryland wheat cropping systems. PLoS ONE 12:e0184611. https://doi.org/10.1371/journal.pone.0184611
  31. She, S., Niu, J., Zhang, C., Xiao, Y., Chen, W., Dai, L., Liu, X. and Yin, H. 2017. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Arch. Microbiol. 199:267-275. https://doi.org/10.1007/s00203-016-1301-x
  32. van Elsas, J. D., Garbeva, P. and Salles, J. 2002. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation 13:29-40. https://doi.org/10.1023/A:1016393915414
  33. Wang, Q., Garrity, G. M., Tiedje, J. M. and Cole, J. R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267. https://doi.org/10.1128/AEM.00062-07
  34. Wang, R., Zhang, H., Sun, L., Qi, G., Chen, S. and Zhao, X. 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 7:343. https://doi.org/10.1038/s41598-017-00472-6
  35. Wei, Z. 2012. Effect and mechanism of bio organic fertilizer on controlling soil borne tomato bacterial wilt. Ph.D. thesis. Nanjing Agricultural University, Nanjing, China (in Chinese).
  36. Wieland, G., Neumann, R. and Backhaus, H. 2001. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl. Environ. Microbiol. 67:5849-5854. https://doi.org/10.1128/AEM.67.12.5849-5854.2001
  37. Yang, S. J., Lei, L. P., Zhu, M. L., Xia, Z. Y. and Li, Y. H. 2004. Screening of the parasitical fungi of root knot nematode in tobacco. Southwest Chin. J. Agric. Sci. 17:151-154 (in Chinese). https://doi.org/10.3969/j.issn.1001-4829.2004.z1.036
  38. Yuliar, Nion, Y. A. and Toyota, K. 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30:1-11. https://doi.org/10.1264/jsme2.me14144
  39. Zhang, W. N., Jia, J., Lu, X. Y., Chen, Z. J., Kong, Q. and Chen, Z. 2013. Research progress of Fusarium mycotoxins. Guangdong Agric. Sci. 40:130-133 (in Chinese).
  40. Zheng, Y. X., Yang, M., Wang, J. M., Xu, Y. L., Cai, X. J., Huang, F. Y., Tong, W. J., Chen, X. L., Yu, L. and He, Y. S. 2021. Effects of tobacco root rot on fungal community structure in tobacco rhizosphere soil. Chin. Tob. Sci. 42:50-55 (in Chinese).
  41. Zhou, X. J., Wang, J., Yang, Y. W., Zhao, T. C. and Gao, B. D. 2012. Advances in tobacco bacterial wilt disease. Microbiol. China 39:1479-1486 (in Chinese).