• Title/Summary/Keyword: soil flux

Search Result 278, Processing Time 0.034 seconds

Interactions and Changes between Sapflow Flux, Soil Water Tension, and Soil Moisture Content at the Artificial Forest of Abies holophylla in Gwangneung, Gyeonggido (광릉 전나무인공림에서 수액이동량, 토양수분장력 그리고 토양함수량의 변화와 상호작용)

  • Jun, Jaehong;Kim, Kyongha;Yoo, Jaeyun;Jeong, Yongho;Jeong, Changgi
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.496-503
    • /
    • 2005
  • This study was conducted to investigate the influences of sapflow flux on soil water tensions and soil moisture content at the Abies holophylla plots in Gwangneung, Gyeonggido, from September to October 2004. The Abies holophylla had been planted in 1976 and thinning and pruning were carried out in 1996 and 2004. Sapflow flux was measured by the heat pulse method, and soil water tension was measured by tensiometer at hillslope and streamside. Time domain reflectometry probes (TDR) were positioned horizontally at the depth of 10, 30 and 50 cm to measure soil moisture content. All of data were recorded every 30 minutes with the dataloggers. The sapflow flux responded sensitively to rainfall, so little sapflow was detected in rainy days. The average daily sapflow flux of sample trees was 10.16l, a maximum was 15.09l, and a minimum was 0.0l. The sapflow flux's diurnal changes showed that sapflow flux increased from 9 am and up to 0.74 l/30 min. The highest sapflow flux maintained by 3 pm and decreased almost 0.0 l/30 mm after 7 pm. The average soil water tensions were low ($-141.3cmH_2O$, $-52.9cmH_2O$ and $-134.2cmH_2O$) at hillslope and high ($-6.1cmH_2O$, $-18.0cmH_2O$ and $-3.7cmH_2O$) at streamside. When the soil moisture content decreased after rainfall, the soil water tension at hillslope responded sensitively to the sapflow flux. The soil water tension decreased as the sapflow flux increased during the day time, whereas increased during the night time when the sapflow flux was not detected. On the other hand, there was no significant relationship between soil water tension and sapflow flux at streamside. Soil moisture content at hillslope decreased continuously after rain, and showed a negative correlation to sapflow flux like a soil water tension at hillslope. As considered results above, it was confirmed that the response of soil moisture tension to sapflow flux at hillslope and streamside were different.

Practical Use of Flux Gradient Similarity Theory for Forest Soil NO Flux at Mt. Taewha (Flux-gradient similarity theory 적용에 따른 태화산 산림지표 토양NO플럭스 분석)

  • Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.531-537
    • /
    • 2014
  • Terrestrial vegetation has been known as a main source of biogenic volatile organic compounds (BVOCs). Isoprene and monoterpene among the BVOCs are most abundant species emitted by forests, and have a significant impact on atmospheric chemistry. Abundancy of these species could lead to an increase or decrease in the production of natural tropospheric ozone in forests, depending on the nitric oxide (NO) concentration. Soil is the most significant source of natural NO. Understanding of NO emission from forest soil could be critical in evaluation of air quality in the forest area. Flux-gradient similarity theory (FGST) was applied for practical use to estimate forest soil NO emission at Mt. Taewha where is available micro-meteorological data near surface monitoring from flux tower. NO fluxes calculated by FGST were compared to flux results by flow-through dynamic chamber (FDC) measurement. Surface NO emission trends were shown between two different techniques, however their magnitudes were found to be different. NO emissions measured from FDC technique were relatively higher than those from theoretical results. Daily mean NO emissions resulted from FGST during Aug. 13, 14 and 15 were $0.28{\pm}8.45$, $2.17{\pm}15.55$, and $-3.18{\pm}13.65{\mu}gm^{-2}hr^{-1}$, respectively, while results from FDC were $2.26{\pm}1.44$, $5.11{\pm}3.85$, and $2.23{\pm}6.45{\mu}gm^{-2}hr^{-1}$. Trends of daily means were shown in similar pattern, which NO emissions were increasing during late afternoon ($r^2$=0.04). These emission trends could be because soil temperature and moisture influence importantly soil microbiology.

A Model for Settling Rate of the Dredged Soil (준설토의 침강속도 추정모델의 개발)

  • Yun, Sang-Muk;Chang, Pyoung-Wuck;Won, Jung-Yun;Kim, Sung-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • The settling rate of the dredged soil may vary with mineral composition, grain size distribution, initial con contration and salt concentration of suspension of the site. A series of settling column test was performed to investigate the settling rate characteristics of solid suspension material from dredging and reclamation. The settling rate of soil mixed with various size of particles depended on clay fraction which showed a inherent flux. A model was developed to predict the particle flux of mixed soil from the clay flux and its applicability was verified.

Measurements of Gases Emissions form Agricultural Soils and Their Characteristics with Chamber Technique: Emissions of NO and $N_2O$ (챔버를 이용한 농작지로부터의 기체배출량의 측정과 배출특성연구: 일산화질소(NO)와 아질산가스($N_2O$)의 배출량산정)

  • 김득수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.203-212
    • /
    • 2001
  • During the growing season from June to August, 2000, the soil NO and $N_2$O fluxes were measured to elucidate characteristics of soil nitrogen emissions from different types of intensively managed agricultural soils at outskirts of Kunsan City, located in the western inland of Korea, Flux measurements were made using a closed chamber technique at two different agricultural fields; one was made from upland field, and the other from rice paddy field. The flux data from upland field were collected for both the green onion and soybean field. Concentrations of NO and $N_2$O inside a flux chamber ar 15 minute sampling interval were measured to determine their soil emissions. Either polyethylene syringes of teflon air bags were used for gas samples of $N_2$O and NO. The analysis of NO and $N_2$O was made using a chemiluminesence NO analyzer and GC-ECD, respectively no later than few hours after sample collection at laboratory. The gas fluxes were varied more than one standard deviation around their means. Relatively high soil gas emissions occurred in the aftermoon for both NO and $N_2$O. A sub-peak for $N_2$O emission was observed in the morning period, but not in the case of NO. NO emissions from rice paddy field were much less than those from upland site. It seems that water layer over the rice paddy field prevents gases from escaping from the soil surface covered with were during the irrigation and acts as a sink of these gases. The NO fluxes resulted from these field experiments were compared to those from grass soil and they were found to be much higher. Diurnal and daily variations of NO and $N_2$O emission were discussed and correlated with the effects of nitrogen fertilizer application on the increase of the level of soil nitrogen availability.

  • PDF

N2O Emissions from Agricultural Soils and Their Characteristics (밭 토양으로부터 아질산(N2O기체의 배출량 측정과 배출특성)

  • 김득수;오진만
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.529-540
    • /
    • 2003
  • A closed chamber system was used for measuring $N_2$0 fluxes from an agriculturally managed upland soil in Kunsan during the growing season from May to July 2002. It is known that soil is one dominant source of atmospheric $N_2$O, contributing to about 57% (9 Tg y $^{-1}$ ) of the total annual global emission. Hence, its increasing emissions and concentrations are largely associated with agricultural activities. In order to elucidate characteristics of soil nitrogen emissions from intensively managed agricultural soils and to understand the roles of soil parameters (soil moisture, soil pH, soil temperature, and soil nitrogen) in the gas emission, $N_2$O soil emissions were measured at every hour during the experimental period (21 days). Soil $N_2$O fluxes were calculated based on changes of $N_2$O concentrations measured inside a closed chamber at every hour. The analysis of $N_2$O was made by using a Gas Chromatography (equipped with Electron Capture Detector). Soil parameters at sampling plots were also analyzed. Monthly averaged $N_2$O fluxes during May, June, and July were 0.14, 0.05, and 0.13 mg-$N_2$O m$^{-2}$ h$^{-1}$ , respectively. Soil temperature and soil pH did not significantly vary over the experimental period; soil temperatures ranged from 12∼$25^{\circ}C$, and soil pH ranged 4.56∼4.75. However, soil moisture varied significantly from 32% to 56% in WFPS. Relationships between soil parameters and $N_2$O fluxes exhibited positive linear relationships. Strong positive correlation ($R^2$ = 0.57, P< 0.0001) was found between $N_2$O flux and sil moisture. It suggests that soil moisture has affected strongly soil $N_2$O emissions during the experimental periods, while other parameters have remained relatively at constant levels. $N_2$O flux from agricultural soils was significant and should be taken account for the national emission inventory.

Measurement of Soil CO2 Efflux Using a Closed Dynamic Chamber System (폐회로 역학 챔버 시스템을 이용한 토양 이산화탄소 플럭스 관측)

  • Chae, Nam-yi;Kim, Joon;Kim, Dong-gill;Lee, Do-won;Kim, Rae-Hyun;Ban, Ji-yeon;Son, Yo-whan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.94-100
    • /
    • 2003
  • Soil $CO_2$ emission is one of the primary components in carbon balance of terrestrial ecosystems. To accurately assess their net ecosystem exchange of $CO_2$ and net primary production, measurement of soil $CO_2$ efflux is required along with that of canopy $CO_2$ flux. In this paper, soil $CO_2$ flux measurement technique using closed dynamic chamber systems is briefly reviewed. Preliminary results on soil $CO_2$ exchange and inter-comparison of different measurement systems currently used in Korean regional network of tower flux measurement sites (KoFlux) are also reported.

Sensitivity Analysis (Q10) of Carbon Dioxide Flux with Soil Temperature in the Grassplot (잔디밭에서 지온에 대한 이산화탄소 플럭스의 민감도(Q10) 분석)

  • Kang, Dong-hwan;So, Yoon Hwan;Kwon, Byung Hyuk;Kim, Park Sa
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.785-795
    • /
    • 2019
  • In order to analyze the sensitivity of carbon dioxide flux by soil temperature in the grassplot, carbon dioxide flux and soil temperature were observed 24 times from March, 2010 to March, 2011 at nine sites in the grassplot. The average of $CO_2$ in the grassplot is $2.2{\sim}36.7^{\circ}C$, the highest in August, the lowest in January, and the average of carbon dioxide flux is $12{\sim}1479mgCO_2{\cdot}m^{-2}{\cdot}hr^{-1}$, and the carbon dioxide emission from the grassplot to the atmosphere was 10 times higher in summer than in winter. The temperature response coefficient estimated by the exponential function of carbon dioxide flux according to soil temperature was ranged from 0.1065 to 0.1274, and the increase tendency of $CO_2$ flux with soil temperature was linear at $0{\sim}20^{\circ}C$ and exponential at $20{\sim}40^{\circ}C$. The $Q_{10}$ values for each of nine observation sites on the grassplot was in the range of 2.901 ~ 3.575, and the $Q_{10}$ value using the total data observed in the lawn was estimated to be 3.374. In the homogeneous grassplot area, the average of $Q_{10}$ values by observation point and the $Q_{10}$ value by the total data were estimated similarly.

Pattern of Nutrient Fluxes in Deciduous Forest Ecosystem Imparted by Acidic Deposition (산성강하물 조건하에서 활엽수림 생태계의 양료순환 양상)

  • Chang, Kwan-Soon
    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.3
    • /
    • pp.230-236
    • /
    • 2001
  • The fluxes of wet deposition(WD), throughfall(TF), stemflow(SF) and soil leachates were measured to understand base cation budgets on deciduous ecosystem impacted by acidic deposition in the north-western part of Tomakomai in Hokkaido, Japan. The flux of $H^{+}$ for wet deposition was $0.34kmo1_{c}$ $ha^{2+}$ and the flux of base cation, $K^{+}$ /, Na$^{ + }$, $Ca^{2+}$ and $Mg^{2+}$ far throughfall plus stemflow wart 1.6 kmolc $ha^{-1}$ , 3 times higher level than that for wet deposition. The flux of base cation for canopy leaching(LI) was 0.95 kmolc ha$^{-1}$ , 2.8 times higher level than $H^{+}$ sources in wet deposition. The major mechanism of $^{+}$ consumption closely related to acidic neutralizing capacity of canopy. The ionic flux for soil leachates from Boil reservoir and proton consumption in soil was dependent on soil chemical states and exchangeable Ca in soil had a major factor of H$^{+ }$ consumption. The base cation budgets on deciduous ecosystem showed positive balance fur Na, Ca and Mg, while K was the negative value.

  • PDF

Estimation Method of Evapotranspiration over Goheung bay Wetland (고흥만 습지에서 증발산량의 산출 방법)

  • KWON, Byung Hyuk;KIM, Dong Su;KIM, Geun Hoi;KANG, Dong Hwan
    • Journal of Wetlands Research
    • /
    • v.10 no.1
    • /
    • pp.21-30
    • /
    • 2008
  • Evapotranspiration is an important factor in the energy interaction process between the surface and the air. Over a vegetable canopy, evapotranspiration was investigated by measuring the sensible heat flux, the soil heat flux and the net radiation flux. Evapotranspiration based on routine AWS data is in good agreement with that estimated from the energy balance equation except for weak wind shear less than $1s^{-1}$ and a cloudy period. Soil heat flux can be approximately to 10% of net radiation flux at the lower layer. When the slope of the saturation vapor pressure versus temperature curve ($de_s/dT$) is approximated to 1.5, the evapotranspiration can be described in function of the net radiation energy flux over Goheung bay wetland covered with the vegetable canopy, reeds.

  • PDF

Estimation of Soil Surface Temperature by Heat Flux in Soil (Heat flux를 이용한 토양 표면 온도 예측)

  • Hur, Seung-Oh;Kim, Won-Tae;Jung, Kang-Ho;Ha, Sang-Keon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.131-135
    • /
    • 2004
  • This study was carried out for the analysis of temperature characteristics on soil surface using soil heat flux which is one of the important parameters forming soil temperature. Soil surface temperature was estimated by using the soil temperature measured at 10 cm soil depth and the soil heat flux measured by flux plate at 5 cm soil depth. There was time lag of two hours between soil temperature and soil heat flux. Temperature changes over time showed a positive correlation with soil heat flux. Soil surface temperature was estimated by the equation using variable separation method for soil surface temperature. Arithmetic mean using temperatures measured at soil surface and 10 cm depth, and soil temperature measured at 5 cm depth were compared for accuracy of the value. To validate the regression model through this comparison, F-validation was used. Usefulness of deductive regression model was admitted because intended F-value was smaller than 0.001 and the determination coefficient was 0.968. It can be concluded that the estimated surface soil temperatures obtained by variable separation method were almost equal to the measured surface soil temperature.