Interactions and Changes between Sapflow Flux, Soil Water Tension, and Soil Moisture Content at the Artificial Forest of Abies holophylla in Gwangneung, Gyeonggido

광릉 전나무인공림에서 수액이동량, 토양수분장력 그리고 토양함수량의 변화와 상호작용

  • Jun, Jaehong (Department of Forest Environment, Korea Forest Research Institute) ;
  • Kim, Kyongha (Department of Forest Environment, Korea Forest Research Institute) ;
  • Yoo, Jaeyun (Department of Forest Environment, Korea Forest Research Institute) ;
  • Jeong, Yongho (Department of Forest Environment, Korea Forest Research Institute) ;
  • Jeong, Changgi (Department of Forest Environment, Korea Forest Research Institute)
  • 전재홍 (국립산림과학원 산림환경부) ;
  • 김경하 (국립산림과학원 산림환경부) ;
  • 유재윤 (국립산림과학원 산림환경부) ;
  • 정용호 (국립산림과학원 산림환경부) ;
  • 정창기 (국립산림과학원 산림환경부)
  • Received : 2005.10.04
  • Accepted : 2005.10.12
  • Published : 2005.12.31

Abstract

This study was conducted to investigate the influences of sapflow flux on soil water tensions and soil moisture content at the Abies holophylla plots in Gwangneung, Gyeonggido, from September to October 2004. The Abies holophylla had been planted in 1976 and thinning and pruning were carried out in 1996 and 2004. Sapflow flux was measured by the heat pulse method, and soil water tension was measured by tensiometer at hillslope and streamside. Time domain reflectometry probes (TDR) were positioned horizontally at the depth of 10, 30 and 50 cm to measure soil moisture content. All of data were recorded every 30 minutes with the dataloggers. The sapflow flux responded sensitively to rainfall, so little sapflow was detected in rainy days. The average daily sapflow flux of sample trees was 10.16l, a maximum was 15.09l, and a minimum was 0.0l. The sapflow flux's diurnal changes showed that sapflow flux increased from 9 am and up to 0.74 l/30 min. The highest sapflow flux maintained by 3 pm and decreased almost 0.0 l/30 mm after 7 pm. The average soil water tensions were low ($-141.3cmH_2O$, $-52.9cmH_2O$ and $-134.2cmH_2O$) at hillslope and high ($-6.1cmH_2O$, $-18.0cmH_2O$ and $-3.7cmH_2O$) at streamside. When the soil moisture content decreased after rainfall, the soil water tension at hillslope responded sensitively to the sapflow flux. The soil water tension decreased as the sapflow flux increased during the day time, whereas increased during the night time when the sapflow flux was not detected. On the other hand, there was no significant relationship between soil water tension and sapflow flux at streamside. Soil moisture content at hillslope decreased continuously after rain, and showed a negative correlation to sapflow flux like a soil water tension at hillslope. As considered results above, it was confirmed that the response of soil moisture tension to sapflow flux at hillslope and streamside were different.

본 연구는 2004년 9월에서 10월까지 경기도 광릉시험림내 국립산림과학원 산림수문 유역시험지인 전나무 인공림에서 수목의 증산에 의해 나타나는 수액이동량과 토양수분장력 및 토양함수율의 변화를 조사하고, 이들 간의 상호작용을 밝히기 위하여 수행되었다. 대상지인 전나무림은 1976년 조림지로서 1996년 2월부터 7월까지 1차 간벌과 가지치기를 실시하였으며 2004년 4월에 2차 간벌과 가지치기를 실시하였다. 수액이동량은 수액유속계로 측정하였으며, 토양수분장력은 사면부와 계류부에 텐시오미터를 설치하여 조사하였다. 토양함수량은 사면부에 10, 30, 50 cm 깊이로 TDR을 매설하여 관측하였으며, 각 조사항목들은 30분단위로 측정하여 데이터로거에 저장하였다. 조사기간 동안 일일 평균수액이동량은 10.16l이고, 최대는 15.09l, 최소는 0.01l였다. 시간별로는 9시부터 수액이동량이 증가하기 시작하여 13시에 최대치인 30분당 0.74l에 달하였으며, 15시까지 그 값이 유지된 후 급감하기 시작하여 19시를 지나면서 0으로 수렴하였고 야간에는 수액이동이 거의 없었다. 강우시에는 주간에도 수액이동량이 거의 없는 것으로 나타났다. 토양수분장력은 사면에서 평균 $-141.3cmH_2O$, $-52.9cmH_2O$, $-134.2cmH_2O$로 낮았으며, 계류부 사이의 완경사지에서 평균$-6.1cmH_2O$, $-18.0cmH_2O$ and $-3.7cmH_2O$로 높게 나타났다. 특히 토양수분에 대한 강우의 영향이 감소된 후 사면의 토양수분장력은 수목의 증산에 따라 일주기성을 나타내어 수액이동량이 증가하면 토양수분장력이 낮아지고 수액이동량이 감소하면 토양수분장력이 높아지는 경향을 보였으나, 계류부에서는 수액이동량의 영향을 파악할 수 없었다. 토양함수율은 강수 종료 후 지속적으로 감소하였으며, 사면부의 토양수분장력과 같이 증산에 따른 일주기성을 나타내어 주간에는 토양함수율이 감소하였고 수액의 이동이 거의 없는 야간에는 함수율이 유지되거나 또는 소폭 상승하는 경향이 나타났다. 이상의 결과로 수액이동량의 변화에 따른 토양수분의 변화는 사면부와 계류부에서 다르게 나타나는 것을 알 수 있었다.

Keywords

References

  1. 한상섭, 김선희. 1993. 수목의 수분특성에 관한 생리 . 생태학적 해석 (VII)-Heat pulse법에 의한 낙엽송임분의 수액유속 계측-. 한국임학회지 82(2): 152-165
  2. Cienciala, E., J. Kucera and A. Maimer. 2000. Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo. Journal of Hydrology 236: 109-120 https://doi.org/10.1016/S0022-1694(00)00291-2
  3. Granier. A., P. Biron and D. Lemoine. 2000. Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology 100: 291-308 https://doi.org/10.1016/S0168-1923(99)00151-3
  4. Jimenez, M.S., J. Cermak, J. Kucera and D. Morales. 1996. Laurel forests in Tenerife, Canary Islands: the annual course of sap flow in Laurus trees and stand. Journal of Hydrology 183: 307-321 https://doi.org/10.1016/0022-1694(95)02952-4
  5. Lagergren, F. and A. Lindroth. 2002. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agricultural and Forest Meteorology 112: 67-85 https://doi.org/10.1016/S0168-1923(02)00060-6
  6. Lagergren, F. and A. Lindroth. 2004. Variation in sap flow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden. Forest Ecology and Management 188: 51-63 https://doi.org/10.1016/j.foreco.2003.07.018
  7. Roberts, S., R. Vertessy and R. Grayson. 2001. Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. Forest Ecology and Management 143: 153-161 https://doi.org/10.1016/S0378-1127(00)00514-4
  8. Vertessy, R.A., F.G.R. Watson and S.K. O'Sullivan. 2001. Factors determining relations between stand age and catchment water balance in mountain ash forests. Forest Ecology and Management 143: 13-26 https://doi.org/10.1016/S0378-1127(00)00501-6