• Title/Summary/Keyword: soil environmental risk assessment

Search Result 220, Processing Time 0.022 seconds

Impact of Urbanization on Hydrology of Geumho River Watershed: A Model Study (금호강 유역의 수문환경에 대한 도시화의 영향: 모형 연구)

  • Kim, Jae-Chul;Lee, Jiho;Yoo, Chulsang;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • The Geumho river watershed located in the middle of the Nakdong river has been threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of ecological habitats in Geumho river. Anticipated increase in imperviousness, on the other hand, is expected to elevate flood risk and the associated environmental damage. A watershed hydrology based modeling study is initiated in this study to assist in planning for sustainable future development in the Geumho river watershed. The Soil and Water Assessment Tool (SWAT) is selected to model the impact of urbanization in the Geumho river watershed on the hydrologic response thereof. The modeling results show that in general the likelihood that the watershed will experience high and low stream flows will increase in view of the urbanization so far achieved.

Hyperaccumulation mechanism in plants and the effects of roots on rhizosphere soil chemistry - A critical review (고축적식물의 중금속 흡수기작과 뿌리에 의한 근권 토양의 화학변화 - 총설)

  • Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.280-291
    • /
    • 2007
  • Much research has been conducted in the field of phytoremediation since the discovery of the range of plants known as hyperaccumulators. Research has focused simultaneously on elucidating the mechanism of metal(loid) accumulation and development of practical techniques to enhance accumulation efficiency. To date, it is generally understood that there are five specific mechanisms employed by hyperaccumulating plant species that are either not or under utilized by non-hyperaccumulators. These include 1) enhanced metal(loid)s uptake through the root cell, 2) enhanced translocation in plant tissue, 3) detoxification and sequestration, 4) enhanced metal availability in soil:root interface, and 5) active root foraging toward metal(loid) enriched soils. Among these mechanisms, understanding of the plant-root effect on metal(loid) dynamics and subsequent plant uptake is vital to overcome the inherit limitation of phytoremediation caused by low metal(loid) solubility in soils. Plant roots can influence the soil chemistry in the rhizosphere through changes in pH and exudation of organic compounds such as low-molecular-weight organic acids (LMWOAs) which consequently change metal(loid) solubility. The decrease in soil pH by plant release of $H^+$ results in increased metal solubility. Elevated levels of organic compounds in response to high metal soil concentrations by plant exudation may also increases metal concentration in soil solution through formation of organometallic complexes.

Development and Evaluation of the KOrea Insecticide Exposure Model (KOIEM) for Managing Insecticides

  • Jung, Ja-Eun;Lee, Yong-Ju;Kim, Yoon-Kwan;Lee, Sung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1183-1189
    • /
    • 2012
  • The KOrea Insecticide Exposure Model (KOIEM) was developed to facilitate ecological risk-based management of Korean insecticides. KOIEM, applied as a multimedia fate model, evaluates water, soil, air, and vegetation compartments based on three water-body types (streams, ditches, and ponds). Deltamethrin, a pyrethroid insecticide, was used to evaluate and create the model parameters. After exposure of both the stream and the ditch to deltamethrin, the KOIEM-predicted concentrations and the observed levels were in agreement. The model was also evaluated using the accuracy factor (AF), which was 4.32 and 0.35 for the stream and ditch, respectively. Ecological risk assessment was also performed to evaluate the application of KOIEM for four popular South Korean insecticides (cypermethrin, deltamethrin, diazinon, and permethrin). Despite the insecticides having low PECs in water, their risk quotients were typically above 1.0. Thus, KOIEM modification would be required in further studies to account for spatial variation.

Transition Characteristics and Risk Assessment of Heavy Metal(loid)s in Barley (Hordeum vulgare L.) Grown at the Major Producing Districts in Korea

  • Kim, Da-Young;Kim, Won-Il;Yoo, Ji-Hyock;Kwon, Oh-Kyung;Cho, Il Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • BACKGROUND: The concern over heavy metal(loid)s in arable land and agricultural products increases for public health in recent years. This study aims to identify transition characteristics of heavy metal(loid)s and to assess dietary risk in barley grown at the major producing districts in Korea. METHODS AND RESULTS: The soil and barley samples were collected from 38 locations around the major producing districts at Jeollabuk-do in Korea for the propose of examining the concentrations of heavy metal(loid)s. The 34 barley samples were separately purchased on the market for the same survey. The average concentration and range of arsenic (As), cadmium (Cd) and lead (Pb) in barley grown at the major producing districts in Korea were 0.037 (0.016-0.094), 0.028 (0.004-0.083) and 0.137 (0.107-0.212) mg kg-1, respectively. Currently, the maximum allowable level for barley Pb is set at 0.2 mg kg-1 in Korea, and the monitoring results suggested that some samples exceeded the maximum allowable level and required appropriate farming management. Bio-concentration factor values by heavy metal(loid)s in barley were high at Cd, copper (Cu) and zinc (Zn), similar to other crops, while As and Pb were low, indicating low transferability. CONCLUSION: Human exposure to As, Cd and Pb through dietary intake of barley might not cause adverse health effects due to relatively low concentrations, although the Pb in some barley was detected higher than the maximum allowable level. Further study on uptake and accumulation mechanism of Pb by barley might be required to assess the human health risk associated with soil contamination.

Research on Subject Business of Prior Review System on the Influence of Disasters - Based on Quarrying Industry - (사전재해영향성검토협의 대상사업에 관한 연구 - 채석사업을 중심으로 -)

  • Na, Young;Kim, Hwan-Gi
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.5
    • /
    • pp.319-325
    • /
    • 2007
  • Recently, since the risk on natural disasters is increasing due to abnormal weather such as the global warming, a need for a system on prior review on the influence of disasters has emerged in order to establish a solution by analyzing elements of disaster in advance. However, since the inherently destroying business namely the quarrying business is excluded from the range of subject business of Prior Review System on the influence of disasters, a correction for this is required. In order to actually explore how much risk it contains, actual outflow of soil and flood in the quarrying block where quarrying is being currently carried out was examined and the required undercurrent facility capacity which is also used as a grit chamber was investigated. In addition, by comparing the soil outflow of industrial complexes and golf courses which are current subject businesses of Prior Review on the Influence of Disasters and that of rock mountains relative risk level was examined. After investigation, it was found that the risk on occurrence of disasters was increased due to increase in outflow of soil and flood because of the change of land condition during and after development thus an adequate solution to decrease is required. In addition, after comparison with other business groups it was found that a significantly higher amount of soil is outflown in case of rock mountains thus it was analyzed that a solution to decrease is required. Therefore, a correction is immediately required in order to include quarrying business in the subject business of Prior Review System on the Influence of Disasters.

Assessment Techniques of Heavy Metal Bioavailability in Soil - A critical Review (토양 중 중금속 생물유효도 평가방법 - 총설)

  • Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.311-325
    • /
    • 2007
  • The concept of metal bioavailability, rather than total metal in soils, is increasingly becoming important for a thorough understanding of risk assessment and remediation. This is because bioavailable metals generally represented by the labile or soluble metal components existing as either free ions or soluble complexed ions are likely to be accessible to receptor organismsrather than heavy metals tightly bound on soil surface. Consequently, many researchers have investigated the bioavailability of metals in both soil and solution phases together with the key soil properties influencing bioavailability. In order to study bioavailability changes various techniques have been developed including chemical based extraction (weak salt solution extraction, chelate extraction, etc.) and speciation of metals using devices such as ion selective electrode (ISE) and diffusive gradient in the thin film (DGT). Changes in soil metal bioavailability typically occur through adsorption/desorption reactions of metal ions exchanged between soil solution and soil binding sites in response to changes in environment factors such as soil pH, organic matter (OM), dissolved organic carbon (DOC), low-molecular weight organic acids (LMWOAs), and index cations. Increasesin soil pH result in decreases in metal bioavailability through adsorption of metal ions on deprotonated binding sites. Organic matter may also decrease metal bioavailability by providing more negatively charged binding sites, and metal bioavailability can also be decreases as concentrations of DOC and LMWOAs increase as these both form strong chelate complexeswith metal ions in soil solution. The interaction of metal ions with these soil properties also varies depending on the soil and metal type.

Assessment of Environmental Pollution with Tradescantia Bioassays (자주달개비 생물검정 기법을 이용한 환경오염 평가)

  • Kim Jin Gyu;Sin Hae Sik
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.1-15
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public firom agents that can cause mutation anuor cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF

General Factors of the Korean Exposure Factors Handbook

  • Jang, Jae-Yeon;Kim, So-Yeon;Kim, Sun-Ja;Lee, Kyung-Eun;Cheong, Hae-Kwan;Kim, Eun-Hye;Choi, Kyung-Ho;Kim, Young-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.1
    • /
    • pp.7-17
    • /
    • 2014
  • Risk assessment considers the situations and characteristics of the exposure environment and host. Various physiological variables of the human body reflects the characteristics of the population that can directly influence risk exposure. Therefore, identification of exposure factors based on the Korean population is required for appropriate risk assessment. It is expected that a handbook about general exposure factors will be used by professionals in many fields as well as the risk assessors of the health department. The process of developing the exposure factors handbook for the Korean population will be introduced in this article, with a specific focus on the general exposure factors including life expectancy, body weight, surface area, inhalation rates, amount of water intake, and soil ingestion targeting the Korean population. The researchers used national databases including the Life Table and the 2005 Time Use Survey from the National Statistical Office. The anthropometric study of size in Korea used the resources provided by the Korean Agency for Technology and Standards. In addition, direct measurement and questionnaire surveys of representative samples were performed to calculate the inhalation rate, drinking water intake, and soil ingestion.

Safety Evaluation of a Wastewater Reuse for the Farmland Irrigation in Jeju Island (제주지역 하수처리수의 농업용수 재이용 안전성 평가)

  • Son, Yeong Kwon;Rhee, Han-Pil;Kim, Haedo;Choi, Sun Wha;Kim, Jeong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.21-29
    • /
    • 2015
  • Safety of reclaimed wastewater irrigation needs to be evaluated to promote public health. Quantitative microbial and toxic risk assessment was conducted to identify the level of risk for farmland workers who use reclaimed wastewater and groundwater in Jeju island. Microbial risk through inhalation and ingestion exposure was below acceptable level (less than $10^{-3}$) of $7.07{\times}10^{-6}$ for reclaimed wastewater and $9.99{\times}10^{-8}$ for groundwater irrigation worker. Aggregate exposure risk of Ni, As and Cu was most contributable to overall risk in both reclaimed wastewater and groundwater irrigation plot. High cumulative exposure risk was estimated through non-dietary soil ingestion and dermal contact of soil, due to the high concentration of As, Cu and Ni in farmland soil. Overall toxic risk was $2.68{\times}10^{-4}$ for reclaimed water and $2.39{\times}10^{-4}$ for groundwater irrigation, which could not meet acceptable toxic risk level of $10^{-6}$. Further efforts, such as provide personal protective equipments or public health education, need to be implicated to reduce adverse health risk.

Exposure and Risk Assessments of Multimedia of Arsenic in the Environment (환경 중 비소의 매체통합 노출평가 및 위해성평가 연구)

  • Sim, Ki-Tae;Kim, Dong-Hoon;Lee, Jaewoo;Lee, Chae-Hong;Park, Soyeon;Seok, Kwang-Seol;Kim, Younghee
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.152-168
    • /
    • 2019
  • The element arsenic, which is abundant in the Earth's crust, is used for various industrial purposes including materials for disease treatment and household goods. Various human activities, such as the disposal of soil waste, metal mining and smelting, and combustion of fossil fuels, have caused the pollution of the environment with arsenic. Recently, guidelines for arsenic in rice have been adopted by the Korean ministry of food and drug safety to prevent health risks based on rice consumption. Because of the exposure to arsenic and its accumulation in the human body through various channels, such as air inhalation, skin contact, ingestion of drinking water, and food consumption, integrated multimedia risk assessment is required to adopt appropriate risk management policies. Therefore, integrated human health risk assessment was carried out in this study using integrated exposure assessment based on multimedia (e.g., air, water, and soil) and multi-route (e.g., oral, inhalation, and dermal) scenarios. The results show that oral uptake via drinking water is the most common pathway of arsenic into the human body, accounting for 57%-96% of the total arsenic exposure. Among various age groups, the highest exposures to arsenic were observed in infants because the body weight of infants is low and the surface areas of infant bodies are large. Based on the results of the exposure assessment, the cancer and non-cancer risks were calculated. The cancer risk for CTE and RME is in the range of 2.3E-05 to 6.7E-05 and thus is negligible because it does not exceed the cancer probability of 1.0E-04 for all age groups. On the other hand, the cancer risk for RME varies from 6.4E-05 to 1.8E-04 and from 1.3E-04 to 1.8E-04 for infants and preschool children, exceeding the excess cancer risk of 1.0E-04. The non-cancer risks range from 5.4E-02 to 1.9E-01 and from 1.5E-01 to 6.8E-01, respectively. They do not exceed the hazard index 1 for all scenarios and all ages.