• Title/Summary/Keyword: soil electrical conductivity

Search Result 408, Processing Time 0.031 seconds

에코콘 관입시스템을 이용한 지반의 현장원위치 수리전도도 측정

  • 정하익;김상근;송봉준;강동우;이경국
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.262-265
    • /
    • 2004
  • The purpose of this study is to investigate environmental characteristics and in-situ hydraulic conductivity by eco cone penetration system. The underground environments and permeability of site was investigated and analyzed by this eco cone system. The electrical resistivity, pH, ORP, temperature and hydraulic conductivity were measured by eco cone penetration system. This eco cone penetration system provides a continuous environment and permeability profiles in underground, and provides reliable results for investigation of normal and contaminated ground.

  • PDF

Physicochemical Properties of Root Zone Soil Based on Sand Blending with Coconut Coir and Peat Moss (코코넛 코이어와 피트모스 혼합 모래 토양의 물리·화학적 특성)

  • Kim, Young-Sun;Bae, Eun-Ji;Choi, Mun-Jin;Kim, Tae-Wooung;Lee, Geung-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • BACKGROUND: Soil amendment was necessary applied for the sand that had been used to root zone of green ground in golf course because of its low water retention power and cation exchangeable capacity. This study was conducted to evaluate the effect of the mixed ratio of peat moss and coconut coir as soil amendment materials on the soil physicochemical properties applied to rootzone based on sand. METHODS AND RESULTS: The soil amendments were blended at 0, 3, 5, 7 and 10% by soil volume. The pH in the peat moss treatment was lower than that of control (0% soil amendment), and pH and electrical conductivity (EC) in the coconut coir were higher. The blending ratio of peat moss was negatively correlated with pH of rootzone soil (p<0.01), and that of coconut coir positively with EC (p<0.01). As compared with control, capillary porosity, the physical factors such as air-filled porosity, total porosity, and hydraulic conductivity of rootzone soil were increased by applying peat moss and coconut coir. For correlation coefficients between percentage of soil amendments and soil physical factors, peat moss and coconut coir were positively correlated with porosity and hydraulic conductivity (p<0.01). CONCLUSION(S): These results indicated that the application of peat moss and coconut coir affected on the change of physicochemical properties of rootzone soil, and improved soil porosity and hydraulic conductivity.

Analysis of Electrical Conductivity During Desalinization of Reclaimed Tidelands (간척지토양의 제염과정중 전기전도도 분석(농지조성 및 농어촌정비))

  • 구자웅;최진규;손재권;조경훈
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.54-65
    • /
    • 2000
  • This study was performed to analyze the changes of electrical conductivity with increasement of water requirements for desalinization in reclaimed tidelands and to obtain the basic data for developing prediction techniques of desalinization to be applicable in the beginning of tideland reclamation. Two different desalinization experiments were conducted through the leaching method by subsurface drainage and the rinsing method by surface darainage, using the samples of silt soil and silt loam soil collected in 5 units of tideland reclamation projects. Regression equations were obtained in order to investigate the changes of electrical conductivity during the desalinization of reclaimed tidelands and to estimate water requirements for desalinization.

  • PDF

A Laboratory Study on the Estimation of Water Requirements for the Desalinization of Reclaimed Tidelands (간척지토양의 제염용수량산정에 관한 실험연구)

  • 구자웅;한강원;은종호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.96-105
    • /
    • 1989
  • This laboratory study was performed to produce basic data for the estimation of water requirements for desalinization, through analyzing changes of the electrical conductivity and the exchangeable sodium percentage during the desalinization of reclaimed tidelands. Desalinization experiments were carried out by two water management practices, namely, the leaching method by subsurface drainage and the rinsing method by surface drainage, using samples of silt loam soil and silty clay loam soil collected in reclaimed tidelands. The results obtained from this study were summarized as follows : 1. The sample soils used in this study were saline-sodic soils with the high electrical conductivity and the high exchangeable sodium percentage. 2. Changes of the electrical conductivity and the exchangeable sodium percentage with water requirements for desalinization showed a similar tendency in the desalinization experiment by the same water management practice. 3. The regression equation between the relative electrical conductivity(EC/EC) and water requirements for desalinization(Dw/Ds) could be described by Dw/Ds=O. 29x(EC/EC.) -0.982 (Leaching method), Dw/Ds=3. 678X0. 030(EC/EC ) (Rinsing method). 4. The regression equation between the relative exchangeable sodium percentage (ESP/ESP ) and water requirements for desalinization (Dw/Ds) could be expressed in Dw/Ds = 0.039 x (ESP/ESP. ) - 1. 134 (Leaching method), Dw/Ds=7. 197X0. 024(ESP/ESP ) (Rinsing method). 5. It was estimated that water requirements for the adequate desalinization would be Dw/Ds=0.3 (Leaching method) and Dw/Ds=3.0 (Rinsing method)

  • PDF

Variability of Soil Water Content, Temperature, and Electrical Conductivity in Strawberry and Tomato Greenhouses in Winter

  • Ryu, Dong-Ki;Ryu, Myong-Jin;Chung, Sun-Ok;Hur, Seung-Oh;Hong, Soon-Jung;Sung, Je-Hoon;Kim, Hak-Hun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • Purpose: Monitoring and control of environmental condition is highly important for optimum control of the conditions, especially in greenhouses and plant factories, and the condition is not uniform within the facility. Objectives of the study were to investigate variability in soil water content and to provide information useful for better irrigation control. Methods: Experiments were conducted in a strawberry-growing greenhouse (greenhouse 1) and a cherry tomato-growing greenhouse (greenhouse 2) in winter. Soil water content, electrical conductivity (EC), and temperature were measured over the entire area, at different distances from an irrigation pump, and on ridge and furrow areas. Results: When measured over the entire greenhouse area, soil water content decreased and temperature and electrical conductivity increased over time from morning to afternoon after irrigation. Water content decreased by distance from the irrigation pump up to 70 m and increased after that, and temperature showed an inverse pattern. Soil water contents on the ridge were lower than those on the furrow, and the differences were 10.2~18.4%, indicating considerable variability. The lowest EC were observed on the furrow and highest values were observed on the ridge. Soil water contents were less and temperature levels were greater at the window side than in the center locations. Conclusions: Selection of number and location of soil water content sensor would be the first step for better water content monitoring and irrigation control. Results of the study would provide basic data useful for optimum sensor location and control for underground greenhouse environment.

Soil-Environmental Factors Involved in the Development of Root Rot/Vine on Cucurbits Caused by Monosporascus cannonballus

  • Kwon, Mi-Kyung;Hong, Jeong-Rae;Kim, Yong-Hwan;Kim, Ki-Chung
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • A root rot/vine decline disease occurred naturally on bottle gourd-stocked watermelon, melon, oriental melon and squash grown in greenhouses, but not on these plants grown in fields. Self-rooted watermelon, cucumber, pumpkin and luffa were also proven to be hosts of the pathogen by artificial inoculation in this experiment. The pathogen was identified as Monosporascus cannonballus by comparing microscopic characteristics of fungal structures with those of previously identified fungal strains. Our field investigations showed that the temperature and electric conductivity of soil in infected greenhouses were higher and the soil moisture content was lower than in noninfected greenhouses. To investigate soil-environmental factors affecting disease development, greenhouse trials and inoculation experiments were conducted. The host plants inoculated and grown under conditions of high soil temperature and electrical conductivity ($35\pm2^{\circ}$, 3.2-3.5 mS) and with low soil moisture content (pF 3.0-4.5) were most severely damaged by the fungal disease. Since plants growing in greenhouses ae usually exposed to such environmental conditions, this may be the reason why the monosporascus root rot/vine decline disease has occurred only on cucurbits cultivated in greenhouses but not in field conditions.

  • PDF

A Method to Obtain Effective Ground Conductivity Value in the Middle Frequency Band where the Informations of Soil Characteristics are Insufficient (토양의 정보가 부족한 지형에 적용 가능한 중파대역 유효 대지 도전율 계산법)

  • Bae, Su-Won;Kwon, Se-Woong;Lee, Woo-Sung;Moon, Hyun-Wook;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.406-412
    • /
    • 2009
  • In this work, a new method to obtain the effective ground conductivity value in the middle frequency band where the informations of soil characteristics are insufficient was proposed. The proposed method obtained the effective ground conductivity values with the measured field strength from sea reference stations and general attenuation model in the middle frequency band. In addition, the proposed method used statistical method to minimize the error between the measurements and the predictions. Then, the effective ground conductivity in Korea peninsular was obtained by using the proposed method. Finally, it was verified that the effective ground conductivity using the proposed method is useful to predict electric field strength in the middle frequency band.

The changes of soil salinity in the Pinus densiflora forest after seawater spread using a fire-fight helicopter

  • Park, Jeong Soo;Koo, Kyu-Sang;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.443-450
    • /
    • 2015
  • The east coast of the Korean Peninsula is susceptible to fires because of the low rainfall in winter and spring, and large forest fires have occurred in this area. Lack of fresh water to combat fires has hampered efforts to prevent widespread forest fires in this region. Seawater has not been used as a suppressant because of possible detrimental effects of salt. We investigated the mobility of saline water in the forest soil and their effect on the microbial activity. Using a fire-fighting helicopter, seawater was sprayed over three plots (50 × 100 m) located on the eastern slope of the Baekdu mountain range in South Korea in April, 2011. We sampled the soil in April 4, May 20, and August 5 to determine the amount of salt that remained in the soil. The electrical conductivity value of the soil decreased to <400 μS/cm over a 1-month period. Approximately, four months after the application of seawater, the electrical conductivity value and Na+ content in all treatment plots did not significantly differ to those of the control plot, and total microbial activity also recovered to that of the control. Our results indicate that the amount of rainfall, soil physical-chemical properties, and topological factors may be a critical factor determining the mobility of saline water in forest soil.

Influence of Forest Management on the Facilitation of Purifying Water Quality in Abies holophylla and Pinus koraiensis Watershed (II) (전나무림(林)과 잣나무림(林) 유역(流域)에서 산림시업(山林施業)이 산림(山林)의 수질정화기능(水質淨化機能)에 미치는 영향(影響)(II))

  • Jeong, Yongho;Park, Jae Hyeon;Kim, Kyong Ha;Youn, Ho Joong;Won, Hyoung Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.498-509
    • /
    • 1999
  • This study aims to clarify the effect of forest management practices(thinning and pruning) in forest hydrological processes on electrical conductivity to get the fundamental information on the facilitation of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study sites which consist of Abies holophylla and Pinus koraiensis in Kwangnung Experimental Forest for 6 months from March 1 to August 4, 1998. In case of deviding into forest hydrological processes, multiple regression equations of electrical conductivity and total amount of anion, $NO{_3}^-$ of throughfall, stemflow, soil water of management site in Abies holophylla shows high significance. And multiple regression equations of electrical conductivity and total amount of anion, $SO{_4}^{2-}$, $Cl^-$ of throughfall, stemflow, soil water of non-management site in Abies holophylla shows high significance. Multiple regression equations of electrical conductivity and $NO{_3}^-$, before non-rain days of throughfall, stemflow, soil water of management site in Pinus koraiensis shows high significance. And multiple regression equations of electrical conductivity and total amount of ion, $NO{_3}^-$, $K^+$, pH, total amount of anion of throughfall, stemflow, soil water of non-management site in Plinus koraiensis shows high significance. Multiple regression equations of electrical conductivity and pricipitation, total amount of ion, $Na^+$ of stream water in Abies holophylla and Pinus koraiensis shows high significance. In case of combining into forest hydrological processes, multiple regression equations of electrical conductivity and total amount of cation and anion, $Na^+$, $Cl^-$, and pH in rainfall, throughfall, stemflow, soil and stream water shows high significance.

  • PDF

Effect of Plant-Growth-Promoting-Bacterial Inoculation on the Growth and Yield of Red Pepper(Capsicum annuum L.) with Different Soil Electrical Conductivity Level (염류수준별 고추 생육과 수량에 미치는 식물생육보진미생물(植物生育保進微生物) 접종효과)

  • Lee, Young-Han;Yang, Min-Suk;Yun, Han-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.396-402
    • /
    • 1996
  • This study was conducted to determine the effect of treatment with the plant-growth-promoting bacteria on the growth and yield of red pepper(Capsicum annuum L.) with different soil electrical conductivity(EC) levels. The mixed liquid culture was done pseudomonas P and saboraud dextrose medium. The isolated bacteria(IB) were inoculated by spray of 3.7ml at 1/2000a pot filled with different soil electrical conductivity level(2.9, 8.6, 11.5dS/m) every week, respectively, with mixed liquid culture (Pseudomonas P+Sabouraud dextrose) of eight strains. The plant height of red pepper with IBs treatment in different soil EC levels showed better growth than IBs nontreatment in the order of the 2.9>8.6>11.5 dS/m. The yield of pepper with IBs treatment in different soil EC level was higher in 13% than IBs nontreatment and chemical properties($P_2O_5$, K, Ca, Mg) of the soil after harvest in IBs treatment were slightly increased, while organic matter and EC of IBs treatment were slightly decreased than those of IBs nontreatment. Moisture content of the soil after the harvesting with IBs treatment was slightly increased than IBs nontreatment.

  • PDF