• Title/Summary/Keyword: soil crack

Search Result 91, Processing Time 0.021 seconds

Estimation of Axial Nail Force Considering Cracks and Creeps of Grout (그라우트의 균열 및 Creep 현상을 고려한 쏘일네일의 축인장력 산정)

  • 임유진;황상기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.159-166
    • /
    • 2000
  • A new method of estimating axial nail force is proposed. An instrumented soil nail wall is selected to investigate the effectiveness of the new proposed method. The new method includes effect of creep and age of cement grout surrounding the steel bar, The new method also considers cracks in the grout generated during and after the end of the wall construction. It is found from this study that a reduced grout stiffness due to creep with age and crack of the grout must be considered for estimating correct axial nail forces. The reduced grout stiffness is considered also providing significant part of axial nail load compared to that of steel bar.

  • PDF

Strength and mechanical behaviour of coir reinforced lime stabilized soil

  • Sujatha, Evangelin Ramani;Geetha, A.R.;Jananee, R.;Karunya, S.R.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.627-634
    • /
    • 2018
  • Soil stabilization is an essential engineering process to enhance the geotechnical properties of soils that are not suitable for construction purposes. This study focuses on using coconut coir, a natural fibre to enhance the soil properties. Lime, an activator is added to the reinforced soil to augment its shear strength and durability. An experimental investigation was conducted to demonstrate the effect of coconut coir fibers and lime on the consistency limits, compaction characteristics, unconfined compressive strength, stress-strain behaviour, subgrade strength and durability of the treated soil. The results of the study illustrate that lime stabilization and coir reinforcement improves the unconfined compressive strength, post peak failure strength, controls crack propagation and boosts the tensile strength of the soil. Coir reinforcement provides addition contact surface, improving the soil-fibre interaction and increasing the interlocking between fibre and soil and thereby improve strength. Optimum performance of soil is observed at 1.25% coir fibre inclusion. Coir being a natural product is prone to degradation and to increase the durability of the coir reinforced soil, lime is used. Lime stabilization favourably amends the geotechnical properties of the coir fibre reinforced soil.

Analysis of Characteristics in Low-shrinkage Cement Treated Base (저수축 시멘트 안정처리 기층의 특성분석)

  • Lee, Seung-Woo;Jeon, Beom-Jun;Kim, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.61-70
    • /
    • 2004
  • Cement treated Soil has superior characteristics as pavement-base including strength, curability, hardness, freezing resistance. However drying shrinkage of Cement treated base has been indicated as disadvantage, since reflection crack of surface layer is induced from drying shrinkage of cement treated base. This study propriety about low-shrinkage cement treated base that can control shrinkage of cement and control reflection crack at asphalt overlay & concrete slab.

  • PDF

Evaluation of Numerical Experiment of Pollution Dispersion on the Sewer Crack Occurrence (하수관거 균열발생에 따른 오염확산의 수치실험 평가)

  • Park, Jaesung;Bae, Wooseok;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2008
  • Because sewer is embedded in land, the pollutant permeating to underground so fast can cause contamination of soil when crack of sewer occurs. In this study, numerical modelling on dispersion of pollutant at sewer crack was performed. Based upon the study, the following conclusions were obtained. It was shown that transfer direction of pollutant was similar to the flow with topography slope of surface. It was exposed that the pollutant permeated to 8~10m depth. It is expected to offer efficiency in sewer management in the future through this research.

  • PDF

Structural Analysis of Stone Pagoda Structure considering Soft Soil Ground Characteristics (연약지반 특성을 고려한 석탑구조물의 구조해석)

  • Kim, Ho-Ryong;Shin, Hyo-Bum;Park, Young-Sin;Kang, Myoung-Hee;Hong, Souk-Il;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.70-73
    • /
    • 2008
  • Because the inclination and crack of stone pagoda structure are caused by the depth difference of soft soil ground and ground subsidence in weak zone, a long-term conservation of stone pagoda structure is difficult. But it is insufficient to analyze the behavior of stone pagoda structure considering soft soil ground in our country. Therefore, we find the structural effect happening in stone pagoda structure by analyzing mechanically a specific of soft soil ground and carry out structural analysis and structural modelling of stone pagoda structure that considers soft soil ground by discrete element method.

  • PDF

Study on Fatigue Life of Continuously Reinforced Concrete Pavement with Design Parameter (설계변수별 연속철근 콘크리트 포장의 피로수명 연구)

  • Park, Jong-Sup;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • A laboratory investigation is conducted to characterize and quantify fatigue lives of continuously reinforced concrete pavements (CRCP) with initial design parameters. Eight specimens scaled were made based on results of finite-element analyses and stress-strain curve comparisons. Static tests were firstly performed to obtain magnitudes of static failure loads and to predict crack patterns before fatigue tests. The fatigue lives measured in the study were compared based on each initial design parameter. The comparison indicates that the fatigue lives of CRCP specimens with initial cracks increases with increasing the initial crack spacing, and CRCP specimens with reinforcements at top of the concrete slab have more fatigue lives than those with reinforcements at midheight of the concrete slab. In addition, the fatigue lives were significantly affected by soil conditions under the CRCP specimens. The results obtained in the study can be used for maintenance and retrofit of the continuously reinforced concrete pavements.

Overturning Resistance of Plain Concrete Piers in OSPG Railroad Bridges

  • Rhee, In-Kyu;Park, Joo-Nam;Choi, Eun-Soo
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The steel plate-girder bridges with concrete gravity piers have possibilities of overturning by lateral inertial force which can be reproduced by sudden earthquake attack. This paper explores an overturning mechanism of existing concrete gravity pier onto the sandy soil in the event of lateral push-over load by in-situ experimental observation. The in-situ push-over experiment for pier with earth anchors between spread footing and rock beds exhibits a reasonable enhancement of ductility against overturning. In unanchored system, a flexural crack at cold joint of concrete pier is not developed because of the over-turning of the pier. This leads a global instability (rotation) of pier-footing system with relatively low stresses in pier itself. While a lateral load is persistently increased in anchored system, the successive flexural cracking failure at cold joint is observed even after the local shear failure of soil due to redistribution of stress equilibrium between soil and pier structure as long as a tensile action of anchor cable is active.

  • PDF

A Study on the Damage of the Three Storied Stone Pagoda of Bulguksa Temple in GyeongJu (경주 불국사 삼층석탑(석가탑) 파손원인에 관한 연구)

  • Ji, Sung-Jin
    • Journal of architectural history
    • /
    • v.22 no.6
    • /
    • pp.47-58
    • /
    • 2013
  • The purpose of this study is to analyze the cause of damage to the three storied stone pagoda of Bulguksa temple in GyeongJu. This report is attempted to making reinforcement and conservation plan through investigating and analyzing the cause of damage to that. The damage is caused by occurring of stress, degrading of stone strength, changing of underground soil structure, natural disasters and so on. Compressive stress, shear stress, bending stress and lateral pressure affected to the pagoda since built up. Ultrasonic examination data tells the strength of the stone. According to this result, strength of the stereobate stone materials is enough to support the weight of the upper ones. But we could found many other factors of the damage could consider, for example the problems occurred on building the pagoda construction and the weakness of the stone material(soft rock). And many environmental factors being changed in soil structure(subsidence of soil and degradation of bearing power of soil and freezing and melting of soil) can be seen as the cause of the damage. Natural disasters like earthquake, lightning and heavy rain were also thought to give direct impact to the damage. At last Concentration of compressive stress caused the crack and exfoliation on the stone materials and shear stress, bending stress and lateral pressure were main causes of the stereobate stone materials shearing.

Measurement of Crack Width of Pavements Using Image Processing (이미지프로세싱을 이용한 도로포장의 균열폭 측정에 관한 연구)

  • Ko, Ji-Hoon;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.33-42
    • /
    • 2002
  • The cracks in the pavements result from drying shrinkage, temperature change, repeated traffic loadings and so on. The reduction of soil support, spatting and many local failures are caused by water and incompressible foreign materials infiltrated into the cracks. In order to reduce this kind of problems the crack width must be controlled and managed by the accurate measurement. The current method is a visual survey using a microscope, which requires traffic blocking. The purpose of this study is to find the best condition to measure accurate crack width using automated pavement condition survey equipment running at the similar speed as other vehicles. In this study pavement surfaces are filmed on an enlarged scale by the camera with a zoom lens, and then the proper focal distance is determined according to the crack width through a pilot survey. The conditions for measurement of the accurate crack width using the image processing technique are suggested by comparing crack widths surveyed using a microscope in the field with those computed by various factors in the image processing program, STADI-2. In conclusion, the camera with a focal distance of 75m could detect crack range of 0.5mm$\sim$1.2mm In width with an accuracy of 80% for CRCP. The camera with a focal distance of 12.5mm could detect crack range of 1.8mm$\sim$3.3mm in width with an accuracy of 90% for asphalt pavement.

  • PDF

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.