• 제목/요약/키워드: soil constitutive model

검색결과 153건 처리시간 0.022초

다짐화강토에 대한 Yasufuku 의 단일항복면 구성모델과 Lade의 복합항복면 구성모델의 비교 (Comprarison of Yasufuku's Single Hardening Constitutice Model and Lade's Double Hardening Constitutive Model for Compacted Weathered Granite Soil)

  • 정진섭
    • 한국농공학회지
    • /
    • 제41권3호
    • /
    • pp.91-100
    • /
    • 1999
  • Tow constitutive models for weathered granite soil, Yasufuku's constitutive model with a single yield surface and Lade's constitutive model with two intersectiong yield surface compared in terms of their capabilities to accurately capture the observed behavior of compacted weathered grainite soil for various stress-paths. Both the single surface and the double surface models capture the experimentally observed behavior at a variety of stress-paths with good accuracy. The double surface model may model the observed compacted weathered granite soil behavior with better accuracy for proportational loading with increasing stress, but the single surface model may model dilatancy property with better accuracy for p-constant loading with increasing stress ratio.

  • PDF

불포화토의 거동예측을 위한 구성식 개발(II) -구성식의 개발 및 적용- (Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Soil( II) - Development and application of constitutive model -)

  • 송창섭;장병욱
    • 한국농공학회지
    • /
    • 제37권1호
    • /
    • pp.81-89
    • /
    • 1995
  • The aim of the work described in this paper is to develope a constitutive model for the prediction of an unsaturated Soil and to confirm the application of the model, which is composed of the elastic and plastic part in consideration of the matric suction and the net mean stress. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated. And the application of the model to silty sands is con- firmed by the comparison between test and predicted results. During drying-wetting and loading-unloading processes for isotropic states, the agreement between predicted and test results are satisfactory. And predicted deviator stresses are well agreed with test results in shearing process. Overall acceptable predictions are reproduced in high confining pressure. Usefulness of the model is confirmed for the unsat- urated soil except volumetric strain, which is not well agreed with the test results due to deficiency of dilatancy of the model in low confining pressure. It is, therefore, recom- mended to study the behavior of dilatancy for an unsaturated soil.

  • PDF

비등방 경화 지반모델을 적용한 굴착지반의 유한요소해석 (Finite Element Analysis of Soil Excavation Using an Anisotropic Hardening Constitutive Model)

  • 오세붕;이승래
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.123-128
    • /
    • 1994
  • For the proper analysis of soil excavation problems through FEM, a constitutive model should be able to simulate the real soil behavior, especially around the excavated section. In this study, the nenlinear finite element analysis is performed using an anisotropic hardening constitutive model based on 'generalized isotropic hardening' rule. Furthermore, in order that the implementation of this constitutive model is performed consistently with the iterative algorithm for the numerical analysis, stresses are implicitly intergrated by the closest point projection algorithm, and a consistent tangent modulus is evaluated. An excavation example including various loading esquences is analyzed, and the results are compared with the Cam-clay model.

  • PDF

탄,소성 구성모델을 이용한 다짐화강토의 응력-변형률 거동예측 (A Prediction of Behavior of Compacted Granite Soils Based on the Elasto-Plastic Constitutive Model)

  • 이강일
    • 한국농공학회지
    • /
    • 제40권2호
    • /
    • pp.148-158
    • /
    • 1998
  • The aims of this study are to evaluate the application on the stress-strain behavior of granite Soil using Lade's double work hardening constitutive model based on the theories of elasticity and plasticity. From two different sites of construction work, two disturbed and compacted weathered granite samples which are different in partical size and degree of weathering respectively were obtained. The specimen employed were sampled at Iksan and Pochon in order to predict the constitutive model. Using the computer program based on the regression analysis, 11 soil parameters for the model were determined from the simple tests such as an isotropic compression-expansion test and a series of drained conventional triaxial tests. In conclusion, it is shown that Lade's double work hardening model gives the good applicability for processing of stress-strain, work-hardening, work-softening and soil dilatancy. Therefore, this model in its present form is applicable to the compacted decomposed granite soil.

  • PDF

다짐풍화화강토에 대한 Yasufuku 구성모델의 평가 (Evaluation of YasufukuYs Constitutive Model for Compacted Weathered Granite Soil)

  • 정진섭;이광찬
    • 한국지반공학회논문집
    • /
    • 제15권5호
    • /
    • pp.43-55
    • /
    • 1999
  • 본 연구는 익산다짐풍화 화강토를 사용하여 여러가지 응력경로 시험을 실시하고 관측된 거동을 정확하게 예측할 수 있는 능력으로서 Yasufuku구성모델을 평가하였다. Yasufuku구성모델로 계산된 변형률은 측정치와 대부분 잘 일치하지만 약간의 차이를 나타내기도 하였다. 측정한 변형률과 계산한 변형률 사이에 가장 큰 차이를 보인곳은 증가하는 응력을 갖는 비례하중이 작용할 때 축변형률에 대하여 일어났다. Yasufuku 구성모델은 익산다짐풍화 화강토의 거동을 일정 구속압력하에서 축하중이 작용할 때와 p'-일정하중이 작용할 때 정확하게 추정할 수 있었다.

  • PDF

Modelling the hydraulic/mechanical behaviour of an unsaturated completely decomposed granite under various conditions

  • Xiong, Xi;Xiong, Yonglin;Zhang, Feng
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.75-87
    • /
    • 2021
  • Because the hydraulic/mechanical behaviour of unsaturated soil is more complicated than that of saturated soil, one of the most important issues in modelling unsaturated soil is to properly couple its stress-strain relationship with its water retention characteristics. Based on the results of a series of tests, the stress-strain relationship and the changes in suction and saturation of unsaturated completely decomposed granite (CDG, also called Masado) vary substantially under different loading/hydraulic conditions. To precisely model the hydraulic/mechanical behaviour of unsaturated Masado, in this study, the superloading concept was firstly introduced into an existing saturated/unsaturated constitutive model to consider the structural influences. Then a water retention curve (WRC) model considering the volumetric change in the soil, in which the skeleton and scanning curves of the water retention characteristics were assumed to shift in parallel in accordance with the change in the void ratio, was proposed. The proposed WRC model was incorporated into the constitutive model, and the validity of the newly proposed model was verified using the results of tests conducted on unsaturated Masado, including water retention, oedometer and triaxial tests. The accuracy of the proposed model in describing the stress-strain relationship and the variations in suction and saturation of unsaturated Masado is satisfactory.

다양한 구성방정식에 따른 터널 거동해석 (The Analysis of Tunnel Behavior using Different Constitutive Models)

  • 김영민;강성귀
    • 터널과지하공간
    • /
    • 제20권2호
    • /
    • pp.73-81
    • /
    • 2010
  • 본 논문에서는 여러 가지의 구성방정식 모델을 이용하여 NATM 터널의 유한요소 해석의 적용에 대하여 설명하였다. 일련의 2차원 평면변형률 조건하 NATM 터널의 지반-구조물에 대한 해석을 분석하였다. 사용한 4가지 구성방정식 모델로는 선형탄성, Mohr-Coulomb 탄소성, 변형경화, 연화지반모델이다. 터널설계에서는 지표면의 침하, 지보재 축력에 대한 적절한 예측이 필요하다. 수치해석결과 진보된 구성방정식 모델이 지반변형과 지보재의 축력에 대해 보다 적절한 결과를 나타내었다.

상대밀도에 따른 구성모델의 토질매개변수 특성 (Characteristic of Soil Parameter of Constitutive Model by Relative Density)

  • 김찬기;조원범;박욱근;김의조;김용철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1117-1121
    • /
    • 2010
  • Several isotropic compression-expansion tests and a series of drained conventional traxial tests with various confining pressures for relative density of Beakma river sand 25%, 50%, 80% and 100% selecting Lade's Single Work-Hardening constitutive model. This examination materials use regression analysis as a basis, depending on the relative density of soil parameters change statement attributes. Yield fuction represent the soil parameters h and $\alpha$ is not affected by the changes in the relative density. $\eta_1$ could be replaced by fomula. And Numerical analysis results predicted very good and could confirm that.

  • PDF

Application of a modified structural clay model considering anisotropy to embankment behavior

  • Zhang, Hao;Chen, Qiushi;Chen, Jinjian;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • 제13권1호
    • /
    • pp.79-97
    • /
    • 2017
  • Natural clays exhibit features such as structural and anisotropy. In this work, a constitutive model that is able to replicate these two salient features of natural clays is presented. The proposed model is based on the classical S-CLAY1 model, where the anisotropy of the soil is captured through the initial inclination and rotation of the yield surface. To account for the structural of the soil, the compression curve of the reconstituted soil is taken as the reference. All parameters of the proposed constitutive model have clear physical meanings and can be conveniently determined from conventional triaxial tests. This proposed model has been used to simulate the behavior of soft soil in the undrained triaxial tests and the performance of Murro embankment in terms of settlement and horizontal displacements during embankment construction and consolidation stage. Results of numerical simulations using proposed model have been compared with the field measurement data. The comparisons show that the two features significantly influence the prediction results.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.