References
- Asaoka, A., Nakano, M. and Noda. T. (1998), "Super loading yield surface concept for the saturated structured soils", Proceedings of the 4th European Conference on Numerical Methods in Geotechnical Engineering NUMGE98, Udine, Italy, October.
- Asaoka, A., Nakano, M. and Noda, T. (2000), "Superloading yield surface concept for highly structured soil behavior", Soils Found., 40(2), 99-110. https://doi.org/10.3208/sandf.40.2_99.
- Burton, G.J., Pineda, J.A., Sheng, D., Airey, D.W. and Zhang, F. (2016), "Exploring one-dimensional compression of compacted clay under constant degree of saturation paths", Geotechnique, 66(5), 435-440. https://doi.org/10.1680/jgeot.14.P.181.
- Gallipoli, D. (2012), "A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio", Geotechnique, 62(7), 605-616. https://doi.org/10.1680/geot.11.P.007.
- Gallipoli, D., Bruno, A.W., D'onza, F. and Mancuso, C. (2015), "A bounding surface hysteretic water retention model for deformable soils", Geotechnique, 65(10), 793-804. https://doi.org/10.1680/jgeot.14.P.118.
- Gallipoli, D., Wheeler, S.J. and Karstunen, M. (2003), "Modelling the variation of degree of saturation in a deformable unsaturated soil", Geotechnique, 53(1), 105-112. https://doi.org/10.1680/geot.2003.53.1.105.
- Gao, Y., Sun, D., Zhou, A. and Li, J. (2018), "Effect of stress state on soil-water retention and its application on the strength prediction", Geotechnique Lett., 8(4), 324-329. https://doi.org/10.1680/jgele.18.00159.
- Gao, Y., Li, Z., Sun, D.A. and Yu, H.H. (2021), "A simple method for predicting the hydraulic properties of unsaturated soils with different void ratios", Soil Till. Res., https://doi.org/10.1016/j.still.2020.104913.
- Chen, B., Ding, X., Gao, Y., Sun, D.A. and Yu, H. (2020), "Hydro-mechanical behavior of compacted silt over a wide suction range", Geomech. Eng., 22(3), 237-244. https://doi.org/10.12989/gae.2020.22.3.237.
- Hashiguchi, K., and Ueno, M. (1977), "Elastoplastic constitutive laws of granular material, constitutive equations of soils", Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Japan, July.
- Henkel, D.J. (1960), "The shear strength of saturated remoulded clays", Proceedings of the Conference on Shear Strength of Cohesive Soils, Boulder, Colorado, U.S.A., June.
- Hu, R., Chen, Y.F., Liu, H.H. and Zhou, C.B. (2013), "A water retention curve and unsaturated hydraulic conductivity model for deformable soils: Consideration of the change in pore-size distribution", Geotechnique, 63(16), 1389-1405. https://doi.org/10.1680/geot.12.P.182.
- Kawamura, S. and Miura, S. (2018), "Mechanical behavior of decomposed granite soils in Hokkaido and its evaluation", Jap. Geotech. J., 13(2), 159-170, https://doi.org/10.3208/jgs.13.159 (In Japanese).
- Khoshghalb, A., Pasha, A.Y. and Khalili, N. (2015), "A fractal model for volume change dependency of the water retention curve", Geotechnique, 65(2), 141-146. https://doi.org/10.1680/geot.14.T.016.
- Li, J. and Cameron, D.A. (2002), "Case study of courtyard house damaged by expansive soils", J. Perform. Constr. Fac., 16(4), 169-175. https://doi.org/10.1061/(ASCE)0887-3828(2002)16:4(169).
- Maqsoud, A., Bussiere, B., Aubertin, M. and Mbonimpa, M. (2012), "Predicting hysteresis of the water retention curve from basic properties of granular soils", Geotech. Geol. Eng., 30(5), 1147-1159. https://doi.org/10.1007/s10706-012-9529-y.
- Miller, G.A., Khoury, C.N., Muraleetharan, K.K., Liu, C. and Kibbey, T.C. (2008), "Effects of soil skeleton deformations on hysteretic soil water characteristic curves: Experiments and simulations", Water Resour. Res., 44(5), 1-10. https://doi.org/10.1029/2007WR006492.
- Murata, H., Hyodo, M. and Yasufuku, N. (1988), "Prediction of stress-strain behaviour of undisturbed "Masado"", Technol. Rep. Yamaguchi Univ., 4(2), 161-170.
- Nuth, M. and Laloui, L. (2008), "Advances in modelling hysteretic water retention curve in deformable soils", Comput. Geotech., 35(6), 835-844. https://doi.org/10.1016/j.compgeo.2008.08.001.
- Pasha, A.Y., Khoshghalb, A. and Khalili, N. (2017), "Hysteretic model for the evolution of water retention curve with void ratio", J. Eng. Mech., 143(7), 04017030. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001238.
- Romero, E., Della Vecchia, G. and Jommi, C. (2011), "An insight into the water retention properties of compacted clayey soils", Geotechnique, 61(4), 313-328. https://doi.org/10.1680/geot.2011.61.4.313.
- Salager, S., Nuth, M., Ferrari, A. and Laloui, L. (2013), "Investigation into water retention behaviour of deformable soils", Can. Geotech. J., 50(2), 200-208. https://doi.org/10.1139/cgj-2011-0409.
- Sehara, Y., Suzuki, M., Yamamoto, T., Terayama, T., Tomokiyo, T. and Kochi, Y. (2006), "Slope disasters caused by typhoon No. 14 of 2005 in Yamaguchi Prefecture", Soils Found., 46(6), 817-830, https://doi.org/10.3208/sandf.46.817.
- Seiphoori, A., Ferrari, A. and Laloui, L. (2014), "Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles", Geotechnique, 64(9), 721-734. https://doi.org/10.1680/geot.14.P.017.
- Sheng, D. (2011), "Review of fundamental principles in modelling unsaturated soil behaviour", Comput. Geotech., 38(6), 757-776. https://doi.org/10.1016/j.compgeo.2011.05.002.
- Sheng, D., Sloan, S. and Gens, A. (2004), "A constitutive model for unsaturated soils: Thermomechanical and computational aspects", Comput. Mech., 33(6), 453-465. https://doi.org/10.1007/s00466-003-0545-x.
- Sheng, D., and Zhou, A.N. (2011), "Coupling hydraulic with mechanical models for unsaturated soils", Can. Geotech. J., 48(5), 826-840. https://doi.org/10.1139/t10-109.
- Sugii, T., Yamada, K. and Kondou, T. (2002), "Relationship between soil-water characteristic curve and void ratio", Proceeding of the 3rd International Conference on Unsaturated Soils, Recife, Brazil, March.
- Sun, D.A., Sheng, D.C., Cui, H.B. and Sloan, S.W. (2007), "A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils", Int. J. Numer. Anal. Met., 31(11), 1257-1279. https://doi.org/10.1002/nag.579.
- Sun, G., Zheng, H., Tang, H. and Dai, F. (2016), "Huangtupo landslide stability under water level fluctuations of the Three Gorges reservoir", Landslides, 13(5), 1167-1179. https://doi.org/10.1007/s10346-015-0637-7.
- Sun, W., Sun, D.A., Fang, L. and Liu, S. (2014), "Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique", J. Rock Mech. Geotech. Eng., 6(1), 48-54. https://doi.org/10.1016/j.jrmge.2013.12.004.
- Tan, F., Zhou, W.H. and Yuen, K.V. (2016), "Modeling the soil water retention properties of same-textured soils with different initial void ratios", J. Hydrol., 542, 731-743. https://doi.org/10.1016/j.jhydrol.2016.09.045.
- Tarantino, A. (2009), "A water retention model for deformable soils", Geotechnique, 59(9) 751-762. https://doi.org/10.1680/geot.7.00118.
- Tsuchida, T., Athapaththu, A.M.R.G., Kano, S. and Suga, K. (2011), "Estimation of in-situ shear strength parameters of weathered granitic (Masado) slopes using lightweight dynamic cone penetrometer", Soils Found., 51(3), 497-512. https://doi.org/10.3208/sandf.51.497.
- van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Am. J., 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
- Vaunat, J., Romero, E. and Jommi, C. (2000), "An elastoplastic hydromechanical model for unsaturated soils", Proceedings of the International Workshop on Unsaturated Soils, Trento, Italy, April.
- Wijaya, M., and Leong, E.C. (2017), "Modelling the effect of density on the unimodal soil-water characteristic curve", Geotechnique, 67(7), 637-645. https://doi.org/10.1680/jgeot.15.P.270.
- Xiong, Y.L., Ye, G.L., Xie, Y., Ye, B., Zhang S. and Zhang F. (2019), "A unified constitutive model for unsaturated soil under monotonic and cyclic loading", Acta Geotechnica, 14(2), 313-328. https://doi.org/10.1007/s11440-018-0754-2
- Xiong, X. (2020), "Modeling of hydro-mechanical behavior of unsaturated soils considering finite deformation and its application to unsaturated landslide dam stability", Ph.D. Dissertation, Nagoya Institute of Technology, Nagoya, Japan.
- Zhang, F. and Ikariya, T. (2011), "A new model for unsaturated soil using skeleton stress and degree of saturation as state variables", Soils Found., 51(1), 67-81. https://doi.org/10.3208/sandf.51.67.
- Zhou, A. and Sheng, D. (2015), "An advanced hydro-mechanical constitutive model for unsaturated soils with different initial densities", Comput. Geotech., 63, 46-66. https://doi.org/10.1016/j.compgeo.2014.07.017.