Processing math: 100%
  • Title/Summary/Keyword: soil classification

Search Result 602, Processing Time 0.026 seconds

Soil Texture, Electrical Conductivity and Chemical Components of Soils under the Plastic Film House Cultivation in Northern Central Areas of Korea (중북부지역(中北部地域) 시설원예지(施設園藝地) 토양(土壤)의 토성(土性), 염농도(鹽濃度) 및 화학성분(化學成分)의 조성(組成))

  • Jung, Goo-Bok;Ryu, In-Soo;Kim, Bok-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 1994
  • This survey was conducted to investigate the factors affecting on salt accumulation and chemical components of soils cultivated with horticulture crops in plastic film houses. The soil samples were taken from 40 sites in the northern central areas of Korea and were analyzed for the chemical properties and soil separates. The data were evaluated with soil texture and years of cultivation as major factors. The results are summarized as follows : 1. The chemical properties of surface soils in plastic film house were pH 5.80, EC 3.59mScm1, O.M. 4.20%, Av. P2O5 1,178ppm, NO3N 180ppm, Av. SO42 353ppm, Cl 240ppm, Ex. Na 0.40me/100g. 2. Compared to the outside soil of plastic film house, the inside soil had 2.5~3 times higher contents of NO3N, Av. SO42 and Cl, 1.2~1.8 times higher exchangeable base elements, and 2.8 times higher electrical conductivity. But pH value of the inside soil was lower than the outside soil by 0.3 pH unit. 3. Soil texture classification showed that sandy loam, loam and silt loam were 32.5 %, 37.5 %, and 30.0 %, respectively. The contents of NO3N, Av. SO42, NH4N and EC value were very high in silt loam soils. Av. P2O5 content and pH value of sandy loam soils were higher than those of silt loam and loam soils. 4. The contents of O.M. and Av. P2O5 were higher in long term cultivation, but the contents of NO3N, Av. SO42, Cl, Ex. Mg and Ex. Na including EC of the soil with 2~4 years cultivation were higher than those of the soil with above 5 years cultivation. 5. Multiple linear regression analysis showed that contribution degree of soil chemical properties to the EC was high in the order of $NO_3-N$ > Av. SO42 > Ex. Na > Cl > Av. P2O5 > NH4N > Ex. Mg>Ex. Ca. Among the soil chemical properties the contribution of anions was remarkably high. 6. EC value correlated with A(total content of anions)as r=0.932 and with C(total content of cations) as r=0.452.

  • PDF

Distribution of Heavy Metal Contents in Medicinal Plants and Soils with Soil Texture (약용작물(藥用作物)과 그 재배토양(栽培土壤)의 토성별(土性別) 중금속함량(重金屬含量) 분포(分布))

  • Jung, Goo-Bok;Kim, Bok-Young;Kim, Kyu-Sik;Lee, Jong-Sik;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.158-164
    • /
    • 1996
  • This survey was conducted to investigate the distribution of heavy metal contents in medicinal plants and soils. Plant and soil samples were collected at 254 sites(Angelica gigas : 81, Astragalus membranceus : 38, Platycodn glandiflorum : 36, Paeonia albilora : 34, Codonopsis lanoceolata : 32, Ligusticum chuanxiong : 17, Bupleurum falcatum : 16, respectively) over the country, Soil texture, pH values and heavy metal content of soils and medicinal plants were evaluated as major factors. Soil texture classification showed that sandy loam, loam, loamy sand and silt loam were 46.1%, 26.0%, 19.3% and 8.6% of the total, respectively. The contents of O.M, Ex.Ca. Ex.Mg and EC value were higher in loamy(sandy loam, loam and silt loam)soils than in sandy(loamy sand)soils, but available P2O5 contents of loamy sand soils were higher than those of sandy loam, loam, and silt loam. The contents of Cd, Cu, Pb, Zn and Ni in soil were high in loamy soils, while Cr content was high in loamy silt soils. The contents of Cu and Cr in Angelica gigas were high in loamy soils, and those of Pb in Astragalus membranceus, Paeonia albiflora and Codonopsis lanoceolata were high in sandy loam soils. Correlation coefficients between heavy metal contents in medicinal plants and their soils with soil texture were positively correlated in sandy loam and loam at Cu, loam at Zn, sandy loam, loam and loamy sand at Cr, respectively. Correlation coefficients between pH value of the soils and contents of Cd, Zn and Ni in medicinal plants were negatively correlated, but those of Cd, Pb, Zn and Ni in soils were positively correlated.

  • PDF

Mineralogical Characterization of Asbestos in Soil at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 토양 내 석면의 광물학적 특성)

  • Kim, Jaepil;Jung, Haemin;Song, Suckwhan;Lim, HoJu;Lee, WooSeok;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.479-488
    • /
    • 2014
  • Naturally occurring asbestos (NOA) from disturbance of rocks and soils has been overlooked as a source of exposure that could potentially have a detrimental impact on human health. But, few researches on mineralogical characteristics of NOA occurred in soils have been reported in Korea. Therefore, the objective of this study was to investigate the mineralogical characteristics of NOA occurred in soils at Daero-ri area, Seosan, Chungnam Province, Korea. Sedimentation method was used for particle size separation of the asbestos-containing soils. XRD and PLM analyses were used to characterize mineralogical characteristics and mineral assemblages in soils. SEM-EDS and TEM-EDS analyses were used to characterize mineral morphology and chemical composition. Particle size analyses of the asbestos-containing soils showed they were composed of 26-93% sand, 4-23% silt and 3-70% clay. Soil texture of the soils was mainly sand, sandy loam, sandy clay, and clay. PLM analyses of the soil showed that most of the soil contained asbestiform tremolite and actinolite. The average content of asbestos in the soil was 1.5 wt. %. Therefore, the soil can be classified into asbestos-contaminated soils based on U. S. Environmental Protection Agency classification (content of asbestos in contaminated soil > 1%). Morphologically different types of tremolite such as long fibrous, needle-like, fiber bundle, bladed and prismatic forms co-existed. Prismatic tremolite was dominant in sand fraction and asbestiform tremolite was dominant in silt fraction. This study indicates that the prismatic form of tremolite transform gradually into a fibrous form of tremolite due to soil weathering because tremolite asbestos was mainly existed in silt fraction rather than sand fraction.

Taxonomical Classification and Genesis of Cheongpung Series Distributed on Diluvial Terrace (홍적대지 토양인 청풍통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Park, Chan-Won;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • This study was conducted to reclassify Cheongpung series based on the second edition of Soil Taxonomy, and to dicuss the formation of Cheongpung series distributed on the diluvial terrace. Morphological properties of typifying pedon of Cheongpung series were investigated, and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon of Cheongpung series has red (2.5YR 4/6) silty clay loam Ap horizon (0-18 cm), red (2.5YR 4/8) clay BAt horizon (18-35 cm), red (2.5YR 4/2) cobbly clay Bt1 horizon (35-65 cm), and red (2.5YR4/6) cobbly clay Bt2 horizon (more than 65 cm). The typifying pedon has an argillic horizon from adepth of 18 to more than 65 cm, and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. It can be classified as Ultisol, not as Alfisol. It has udic soil moisture regime, and can be classified as Udult. Also that meets the requirements of Typic Hapludults. It has 35% or more clay at the particle-size control section, and have mesic soil temperature regime. Therefore Cheongpung series can be classified as fine, mesic family of Typic Hapludults, not as fine, mesic family of Ultic Hapludalfs. Cheongpung series occur on moderately elevated diluvial terrace which have relatively stable geomorphic surface. They are developed as Ultisols with clay mineral weathering, translocation of clays to accumulate in an argillic horizon, and leaching of base-forming cations from the profile for relatively long periods under humid, and temperate climates in Korea.

Soil Mechanical Properties and Stability Analysis on Fill Slope of Forest Road (임도성토사면(林道盛土斜面)의 토질역학적(土質力學的) 특성(特性)과 안정해석(安定解析))

  • Ji, Byoung Yun;Oh, Jae Heun;Cha, Du Song
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.2
    • /
    • pp.275-284
    • /
    • 2000
  • This study was carried out to analyze the mechanical properties of soil and the slope stability on the fill slope of forest road constructed in the regions which consist of igneous and metamorphic rock area. The results were summarized as follows. 1) Soil type by Unified Soil Classification System(USCS) was classified as SW in soil slope, GP in weathered rock slope, GP in soft rock slope for both types of parent rock, but gravelly soil slopes in igneous and metamorphic rock area were classified as SP and GW, respectively. 2) Dry unit weight was 1.34g/cm21.59g/cm2, specific gravity 0.57~0.61, and void ratio 0.66~0.93 in the case of igneous rock area, a dry unit weight was 1.35g/cm21.51g/cm2, specific gravity 2.67~2.77, and void ratio 0.78~1.01 in the case of metamorphic rock area. 3) The strength parameters such as internal friction angle(ϕ) and cohesion(c) were selected and tested for slope stability analysis. ϕ and c of soil in igneous rock area were within the range of 29.5141.82 and 0.03kg/cm20.38kg/cm2, respectively, and 21.4341.43 and 0.05kg/cm20.44kg/cm2 in metamorphic rock area, respectively. 4) Result of the slope stability analysis of forest road showed that, in the weathered rock slope of igneous rock and the weathered rock and soil slope of metamorphic rock area, the possibility of slope failure was high as safety factor was below 1.0.

  • PDF

A Feasibility Study on the Deep Soil Mixing Barrier to Control Contaminated Groundwater (오염지하수의 확산방지를 위한 대체 혼합차수재의 적용에 관한 연구)

  • 김윤희;임동희;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.53-59
    • /
    • 2001
  • There is a lot of method to manage the insanitary landfill but vertical cutoff walls have been widespreadly used and were installed into the subsurface to act as a barrier to horizontal groundwater flow, The stabilized material such as specialized cement or mixed soil with additives has been generally applied for the materials of the deep soil mixing barrier in korea. The amount of the stabilized material is dependent on the field conditions, because the mixing ratio of the material and the field soil should achieve a requirement in the coefficient of permeability, lower than 1.0×107cm/sec. This study determined the quantity and optimized function ratio of the stabilized material in the formation process of the mixed barrier that was added with stabilized material on the field soil classified into SW-SC under USCS (Unified Soil Classification System). After that the fly ash and lime were selected as an additives an that could improve the function of the stabilized material and then the method to improve the functional progress in the usage of putting into the stabilized material as an appropriate ratio was studied and reviewed. The author used the flexible-wall permeameter for measuring the permeability and unconfined compressive strength tester for compressive strength, and in the view of environmental engineering the absorption test of heavy metals and leaching test regulated by Korean Waste Management Act were performed. As the results, the suitable mixing ratio of the stabilized material in the deep soil mixing barrier was determined as 13 percent. To make workability easy, the ratio of stabilized material and water was proven to be 1 : 1.5. With the results, the range of the portion of the additives(fly ash : lime= 70 : 30) was proven to be 20-40% for improving the function of the stabilized material, lowering of permeability. In heavy metal absorption assessment of the mixing barrier system with the additives, the result of heavy metal absorption was proved to be almost same with the case of the original stabilized material; high removal efficiency of heavy metals. In addition, the leaching concentration of heavy metals from the leaching test for the environmental hazard assessment showed lower than the regulated criteria.

  • PDF

Taxonomical Classification and Genesis of Asan Series Distributed on Rolling and Hilly Areas (구릉지 토양인 아산통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Park, Chan-Won;Chun, Hyen-Chung;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1258-1263
    • /
    • 2011
  • This study was conducted to reclassify Asan series based on the second edition of Soil Taxonomy and to discuss the formation of Asan series distributed on the rolling to hilly areas. Morphological properties of typifying pedon of Asan series were investigated and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon of Asan series has dark yellowish brown (10YR 4/4) gravelly loam Ap horizon (0-18 cm), strong brown (7.5YR 5/6) gravelly clay loam BA horizon (18-30 cm), red (2.5YR 4/6) gravelly clay loam Bt1 horizon (30-52 cm), red (2.5YR 4/8) gravelly clay loam Bt2 horizon (52-98 cm), and red (2.5YR 4/8) gravelly clay loam C horizon (98-160 cm). The typifying pedon has an argillic horizon from a depth of 30 to 98 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. It can be classified as Ultisol, not as Inceptisol. It has udic soil moisture regime, and can be classified as Udult. Also that meets the requirements of Typic Hapludults. It has 18-35% clay at the particle-size control section, and has mesic soil temperature regime. Therefore Asan series can be classified as fine loamy, mesic family of Typic Hapludults, not as fine loamy, mesic family of Typic Dystrudepts. Asan series occur on rolling to hilly areas in residual materials derived from granite gneiss, schist, and gneiss rocks. They are developed as Ultisols with clay mineral weathering, translocation of clays to accumulate in an argillic horizon, and leaching of base-forming cations from the profile for relatively long periods under humid and temperate climates in Korea.

Spatial Anaylsis of Agro-Environment of North Korea Using Remote Sensing I. Landcover Classification from Landsat TM imagery and Topography Analysis in North Korea (위성영상을 이용한 북한의 농업환경 분석 I. Landsat TM 영상을 이용한 북한의 지형과 토지피복분류)

  • Hong, Suk-Young;Rim, Sang-Kyu;Lee, Seung-Ho;Lee, Jeong-Cheol;Kim, Yi-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.120-132
    • /
    • 2008
  • Remotely sensed images from a satellite can be applied for detecting and quantifying spatial and temporal variations in terms of landuse & landcover, crop growth, and disaster for agricultural applications. The purposes of this study were to analyze topography using DEM(digital elevation model) and classify landuse & landcover into 10 classes-paddy field, dry field, forest, bare land, grass & bush, water body, reclaimed land, salt farm, residence & building, and others-using Landsat TM images in North Korea. Elevation was greater than 1,000 meters in the eastern part of North Korea around Ranggang-do where Kaemagowon was located. Pyeongnam and Hwangnam in the western part of North Korea were low in elevation. Topography of North Korea showed typical 'east-high and west-low' landform characteristics. Landcover classification of North Korea using spectral reflectance of multi-temporal Landsat TM images was performed and the statistics of each landcover by administrative district, slope, and agroclimatic zone were calculated in terms of area. Forest areas accounted for 69.6 percent of the whole area while the areas of dry fields and paddy fields were 15.7 percent and 4.2 percent, respectively. Bare land and water body occupied 6.6 percent and 1.6 percent, respectively. Residence & building reached less than 1 percent of the country. Paddy field areas concentrated in the A slope ranged from 0 to 2 percent(greater than 80 percent). The dry field areas were shown in the A slope the most, followed by D, E, C, B, and F slopes. According to the statistics by agroclimatic zone, paddy and dry fields were mainly distributed in the North plain region(N-6) and North western coastal region(N-7). Forest areas were evenly distributed all over the agroclimatic regions. Periodic landcover analysis of North Korea based on remote sensing technique using satellite imagery can produce spatial and temporal statistics information for future landuse management and planning of North Korea.

Site Classification for Incheon According to Site-Specific Seismic Response Parameters by Estimating Geotechnical Spatial Information Based on GIS (GIS 기반 지반공간정보 추정을 통한 부지고유 지진응답 매개변수 기반 인천 지역의 부지분류)

  • SUN, Chang-Guk;KIM, Han-Saem
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.17-35
    • /
    • 2016
  • Earthquake-induced disasters are often more severe in locations with soft soils than firm soils or rocks due to differences in ground motion amplification. On a regional scale, such differences can be estimated by spatially predicting subsurface soil thickness over the entire target area. In general, soil deposits are generally deeper in coastal or riverside areas than in inland regions. In this study, a coastal metropolitan area, Incheon, was selected to assess site effects and provide information on seismic hazards. Spatial prediction of geotechnical layers was performed for the entire study area within the GIS framework. Approximately 7,000 existing borehole drilling data in the Incheon area were gathered and archived into the GIS Database (DB). In addition, surface geotechnical data were acquired from a walkover survey. Based on the built geotechnical DB, spatial zoning maps of site-specific seismic response parameters were created and presented for use in a regional seismic strategy. Site response parameters were performed to determine site coefficients for seismic design over the entire target area and compared with each other. Site classifications and subsequent seismic zoning were assigned based on site coefficients. From this seismic zonation case study in Incheon, we verified that geotechnical GIS-DB can create spatial zoning maps of site-specific seismic response parameters that are useful for seismic hazard mitigation particularly in coastal metropolitan areas.

Strain Recognition and Classification of Korean Native Rhizobium japonicum by Seroimmunological Method (토착대두근류균(土着大豆根瘤菌)의 균주(菌株) 인식(認識)과 분류(分類)를 위한 혈청면역적(血淸免疫學的) 검정(檢定))

  • Lim, Sun-Uk;Kim, Min-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.141-148
    • /
    • 1988
  • Though the cultivation history of soybean in Korea is relatively long, taxonomical study on symbiont nodule bacteria, Rhizobium japonicum is not carried out yet systematically. This work was for the taxonomical study on Korean native R. japonicum by recognizing isolates seroimmunologically as well as for the elucidation of its affinity with host soybean variety. Twenty seven isolates from 13 soybean cultivars cultivated at Seoul National University's experiment field and 6 strains of R. japonicum preserved in our laboratory have been tested. Tube agglutination test, agglutinin adsorption test, and gel immune diffusion test were used. The results obtained are as follows: 1. Twenty five isolates and strains of R. japonicum among 33 were classified into 4 serogroups and identified as indivisual serotype. 2. Two isolates isolated from Hill and Milyang cultivars, 2 isolates from Bangsa and Jangbaek, and 4 isolates from Paldal, Sae-al, and Jangbaek were identified as the same serotype respectively. 3. Seroimmunological tests may be adapted for the elucidation of the affinities between the strains and soybean cultivars as well as strain recognition and systematic classification of Korean native R. japonicum.

  • PDF