• Title/Summary/Keyword: soil Interaction

Search Result 1,162, Processing Time 0.023 seconds

Bioremediation of Oil-Contaminated Soil Using an Oil-Degrading Rhizobacterium Rhodococcus sp.412 and Zea mays. (유류 분해 근권세균 Rhodococcus sp. 412와 옥수수를 활용한 유류 오염 토양의 정화)

  • Hong, Sun-Hwa;Park, Hae-Lim;Ko, U-Ri;Yoo, Jae-Jun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.150-157
    • /
    • 2007
  • The advanced bioremediation of diesel-contaminated soil through the exploration of bacterial interaction with plants was studied. A diesel-degrading rhizobacterium, Rhodococcus sp.412, and a plant species, Zea mays, having tolerant against diesel was selected. Zea mays was seeded in uncontaminated soil or diesel-contaminated soil with or without Rhodococcus sp. 412. After cultivating for 30 days, the growth of Zea mays in the contaminated soil inoculated with Rhodococcus sp. 412 was better than that in the contaminated soil without the bacterium. The residual diesel concentrations were lowered by seeding Zea mays or inoculating Rhodococctis sp. 412. These results Indicate that the simultaneous use of Zea mays and Rhodococcus sp. 412 can give beneficial effect to the remediation of oil-contaminated soil. Bacterial community was characterized using a 16S rDNA PCR and denaturing gradient gel electrophoresis (DGGE) fingerprinting method. The similarities of DGGE fingerprints were $20.8{\sim}39.9%$ between the uncontaminated soil and diesel contaminated soil. The similarities of DGGE fingerprints were $21.9%{\sim}53.6%$ between the uncontaminated soil samples, and $31.6%{\sim}50.0%$ between the diesel-contaminated soil samples. This results indicated that the structure of bacterial community was significantly influence by diesel contamination.

A Study on Dynamic Pile-Soil-Structure Interactions (말뚝-지반-구조물의 동섬 상호작용 연구)

  • Lee, In-Mo;Lee, Gwan-Ho;Kim, Yong-Jin
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-52
    • /
    • 1991
  • A study of the effects of dynamic pile-soil-structure interactions on the response of super- structures, supported by group piles, are presented in this paper. The dynamic impedance functions of single pile generated by soil-pile interactions are obtained and compared among others using the methods proposed by Novak, Gazetas, and Kuhlemeyer, and using the equivalent cantilever method. Group pile effects are also considered by the following approaches : neglecting interaction effects : group efficiency ratio concept : static interaction approach . and dynamic interaction approach. The responses of a nuclear containment structure are obtained by using the elastic half-space analysis, based on the impedance functions mentioned above. Main conclusions drawn from this study are as follows : 1. The numerical results of the impedance functions calculated by each method were quite different : the Novak's was the smallest, and the Kuhlemeyer's the highest. Considering group effects, similar values in each approach were obtained for the stiffness : the difference was very big for the damping. 2. The top displacement of the structure was reduced by 20% or more by pile installations. However, the base shear force, the base moment, and the resonance frequency were increased by more than two times due to stiffening effect of the ground by pile installations. 3. Whether frequency dependant impedence functions or frequency independant functions were used, the responses of the structure were not so much affected by the choice of the impedance functions. 4. The reduction effect of the top displacement increased with the increase of the maximum ground acceleration.

  • PDF

The Load Distribution Characteristics of Pile Group under Lateral Loading (수평력을 받는 무리말뚝의 하중분담특성)

  • Ahn, Byungchul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2010
  • This paper analyzed the characteristics of p-multiplier and the load distribution of H-pile group installed in weathered soil under horizontal loading. The results of this study conducted in pile arrangement ($2{\times}3$, $3{\times}3$), the pile center to center spacing (2D, 4D, 6D), and soil density (relative density: 40%, 80%) were drawn as follows. As to the average horizontal loading applied to each pile in pile groups, the fewer number of piles was, the larger average horizontal resistance became. As the result of analysis on p-y curves of single piles and pile groups according to the pile distance and the soil density, as the pile spacing was increased from 2D to 6D, the interaction coefficients of pile group showed 0.85~0.94 (piles in the front row), 0.57~0.79 (piles in the middle row), and 0.60~0.71 (piles in the rear row) in the loose ground and showed 0.76~0.82 (piles in the front row), 0.58~0.73 (piles in the middle row), and 0.53~0.70 (piles in the rear row) in the dense ground. As above, the wider pile distance was, the larger interaction coefficient value was shown among piles. In addition, piles in the front row showed bigger interaction coefficients than that of piles in the middle and back row.

Proper Shape Fuction for the Contact Stress in the Soil-Plate Interaction Problems (지반과 구형 평판구조사이의 접촉응력에 적합한 형상함수)

  • 고만기
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.89-97
    • /
    • 1993
  • General formulation to analyse the rectangular thin plate on a soil medium by energy method is developed. In the problem, Boussinesque's formular needs to be integrated after assuming the contact stress distribution. Two different functions, i.e., power series and Chebychev polynomials are used to approximate the contact stress distribution. It was found that Chebychev polynomials are better function to describe the contact stress than power series. Chebychev polynomials considering stress singularity around plate boundary is recommended as the desirable shape function for future research.

  • PDF

Structural Behavior of Underground Subway Structures According to Structural Model (구조 모델링 방법에 따른 지하철 정거장 구조물의 거동)

  • Park Eik-Tae;Lee Hwan-Woo;Kim Kwang-Yang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.3-11
    • /
    • 2005
  • The structural analysis considering the soil-structure interaction is very important in the design process of underground structures located on the site with various soil conditions. In practice, simplified modelling techniques to obtain the approximate solution are used in accordance with the specifications. However, their details are insufficient for practical engineers to obtain the stable solutions and the analysis results of each engineer occasionally my be different in spite of the same problem. In this study, the sensitivity of structural behaviour on the underground structures is analyzed according to the structural modelling techniques of existing specifications. It is performed to obtain the fundamental informations to establish the guide to obtain the stable solutions in practical analysis of the underground structures such as subway structures.

  • PDF

Effect of the Permeability of Excavation Wall on the Earth Pressure in a Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.2
    • /
    • pp.13-21
    • /
    • 2018
  • The magnitude and distribution of earth pressure on the excavation wall in jointed rock mass were examined by considering different wall permeability conditions as well as rock types and joint inclination angles. The study was numerically extended based on a physical model test (Son & Park, 2014), considering rock-structure interactions with the discrete element method, which can consider various characteristics of rock joints. This study focused on the effect of the permeability condition of excavation wall on the earth pressure in jointed rock masses under a groundwater condition, which is important but has not been studied previously. The study results showed that the earth pressure was highly influenced by wall permeability as well as rock type and joint condition. Earth pressure resulted from the study was also compared with Peck's earth pressure in soil ground, and the comparison clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground.

Dynamic Analysis of Tunnel by Using Infinite Element (무한요소를 이용한 터널의 동적해석)

  • 양신추;이희현;변재양
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.145-152
    • /
    • 1994
  • The dynamic interaction between tunnel structures and their surrounding soil medium due to impulse loading is investigated by a hybrid IEM/FEM methodology. A dynamic infinite element is developed for the efficient descretization of the far-field region of the unbounded soil medium. The shape functions of the infinite element are constructed based on the far-field solutions which are obtained by solving the 2-D elastic wave problems. Also they are devised to obtain a reasonable result over all frequency range. Numerical analysis is carried out to examine the response of the tunnel subjected to simple rectangular impulse. It is indicated that the results by the present method are in good accord with those by the boundary and finite element coupling method.

  • PDF

Mat Foundation Analysis Using Variable Node Plate Bending Element (변절점 굉판휨요소를 이용한 전면기초의 해석)

  • 최창근;김한수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.7-12
    • /
    • 1992
  • The variable node plate bending element, ie, the element with one or two additional mid-side nodes is used in the analysis of mat foundation to generate the nearly ideal grid model in which more nodes are defined near the column location. The plate bending element used in this study is the one based on Mindlin/Reissner plate theory with substitute shear strain field and the nodal stresses of that element are obtained by the local smoothing technique. The interaction of the soil material with the mat foundation is modeled with Winkler springs connected to the nodal points in the mat model. The vertical stiffness of the soil material are represented in terms of a modulus of subgrade reaction and are computed in the same way as to the computation of consistent nodal force of uniform surface loading. Several mesh schemes were proposed and tested to find the most suitable scheme for mat foundation analysis.

  • PDF

Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling (NATM 터널의 응력-간극수압 연계 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.189-198
    • /
    • 2006
  • This paper concerns the finite element (FE) modeling approach for NATM tunneling in water bearing ground within the framework of stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as soil-water characteristics, location of hydraulic boundary conditions, the way of modeling drainage flow, among others. The results indicate that the soil-water characteristics plays the most important role in the tunneling-induced settlement characteristics. Based on the results, modeling guidelines were suggested for stress-pore prssure coupled finite element modeling of NATM tunneling.

  • PDF

Status of Weed Control Research in Korea (우리나라 잡초방제의 연구현황)

  • Jong-Hoon Lee;Byung-Hoa Kang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.23 no.3
    • /
    • pp.5-11
    • /
    • 1978
  • Since 1970, herbicides have been widely used in the crop production, especially in paddy field in Korea. In 1978, both preemergence and postemergence type herbicides are applied in the approximately 70% of total paddy field and 15% of upland to control weeds. Most herbicides control annual weeds effectively, but perennials have been problems in the paddy field. Under upland conditions, effectiveness of herbicides varies depending on many environmental conditions (soil moisture, soil physical properties, temperature, etc.) as well as uniform application of appropriate amounts of herbicides. In Korea, many research works have been concentrated on the screening of new herbicides in terms of herbicide effectiveness and yield or phytotoxicity of crops, and especially on the paddy field. However, physiological aspects of herbicidal action in plant and interaction of herbicides with the environments have not been studied approximately. Therefore, researches on the uptake of herbicides and the influence of herbicides on the physiological phenomena such as photosynthesis, respiration, nutrient uptake etc., to control troublesome perennial weeds in the paddy field are needed in future. Also some researches are needed to improve effectiveness of herbicirdes under upland conditions.

  • PDF