• 제목/요약/키워드: software framework

검색결과 1,239건 처리시간 0.03초

The effectiveness of position of coupled beam with respect to the floor level

  • Yasser Abdal Shafey, Gamal;Lamiaa K., Idriss
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.557-586
    • /
    • 2022
  • In spite of extensive testing of the individual shear wall and the coupling beam (CB), numerical and experimental researches on the seismic behavior of CSW are insufficient. As far as we know, no previous research has investigated the affectations of position of CB regarding to the slab level (SL). So, the investigation aims to enhance an overarching framework to examine the consequence of connection positions between CB and SL. And, three cases have been created. One is composed of the floor slab (FS) at the top of the CB (FSTCB); the second is created with the FS within the panel depth (FSWCB), and the third is employed with the FS at the bottom of the CB (FSLCB). And, FEA is used to demonstrate the consequences of various CB positions with regard to the SL. Furthermore, the main measurements of structure response that have been investigated are deformation, shear, and moment in a coupled beam. Additionally, wall elements are used to simulate CB. In addition, ABAQUS software was used to figure out the strain distribution, shear stress for four stories to further understand the implications of slab position cases on the coupled beam rigidity. Overall, the findings show that the position of the rigid linkage among the CB and the FS can affect the behavior of the structures under seismic loads. For all structural heights (4, 8, 12 stories), the straining actions in FSWCB and FSLCB were less than those in FSTCB. And, the increases in displacement time history response for FSWCB are around 16.1-81.8%, 31.4-34.7%, and 17.5% of FSTCB.

군집분석을 활용한 지역별 건강격차 연구: 주관적 건강수준을 중심으로 (Regional Health Disparities of Self-Rated Health Using Cluster Analysis in South Korea)

  • 허민희;백세종;김영진;노진원
    • 보건행정학회지
    • /
    • 제33권2호
    • /
    • pp.118-128
    • /
    • 2023
  • Background: Personal socio-economic abilities are crucial as it affects health inequalities. These multidimensional inequalities across the regions have been structured and fixed. This study aimed to analyze health vulnerabilities by regional cluster and identify regional health disparities of self-rated health, using nationally representative cross-sectional data. Methods: This study used personal and regional data. Data from the Community Health Survey 2021 were analyzed. K-means cluster analysis was applied to 250 si-gun-gu using administrative regional data. The clusters were based on three areas: physical environment, health-related behaviors and biological factors, and the psychosocial environment through the conceptual framework for action on the social determinants of health. And binary logistic regression analyses were conducted to examine the differences in self-rated health status by the regional clusters, controlling human biology, environment, lifestyle, and healthcare organization factors. Results: The most vulnerable group was group 3, the moderate vulnerable group was group 1, and the least vulnerable group was group 2. The group 2 was more likely to have high self-rated health status than the moderate vulnerable group (odds ratio [OR], 1.023; p<0.001). And the group 3 showed low self-rated health status than the moderate vulnerable group (OR, 0.775; p<0.001). However, the moderate vulnerable group had significantly higher self-rated health status than the most vulnerable group (group 2: OR, 1.023; p<0.001; group 3: OR, 0.775; p<0.001). Conclusion: These results demonstrate that community members' health status is influenced by regional determinants of health and individual levels. And these contribute to understanding the importance of specific and differentiated interventions like locally tailored support programs considering both individual and regional health determinants.

파이썬과 로봇을 활용한 인공지능(AI) 교육 프로그램 개발 (Development of Artificial Intelligence Instructional Program using Python and Robots)

  • 유인환;전재천
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.369-376
    • /
    • 2021
  • 인공지능(AI) 기술의 발전에 따라 많은 분야에서 인공지능 활용 방안에 대한 논의가 활발하게 일어나고 있으며 교육 분야에서도 인공지능 인재 양성을 위한 각종 정책이 추진되고 있다. 본 연구에서는 인공지능 기술을 활용한 로봇 프로그래밍 프레임워크를 제안하고 이를 기반으로 머신러닝(Machine Learning) 분야에서 높은 빈도로 활용되는 파이썬(Python)과 교육 현장의 활용도가 높은 교육용 로봇을 활용하여 인공지능(AI) 교육 프로그램을 제안하였다. 국제자동차공학회(SAE)에서 제시하는 자율주행자동차 수준(0~5단계)을 4단계로 단순화하고 이를 기반으로 로봇에 부착된 카메라가 선(객체)을 인지(Perception)하고 검출(Object detection)하여 스스로 움직일 수 있는 라인 디텍터(Line Detector)를 만드는 것을 목표로 하였다. 개발된 프로그램은 단순히 특정 프로그래밍 언어를 활용하여 주어진 문제를 해결하는 정형화된 형태가 아니라 생활 속의 복잡하고 비구조화된 문제를 자기주도적으로 정의하고 인공지능(AI) 기술을 기반으로 해결하는 경험을 가지는데 그 의의가 있다.

  • PDF

맵리듀스 잡을 사용한 해시 ID 매핑 테이블 기반 대량 RDF 데이터 변환 방법 (Conversion of Large RDF Data using Hash-based ID Mapping Tables with MapReduce Jobs)

  • 김인아;이규철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.236-239
    • /
    • 2021
  • AI 기술의 성장과 함께 지식 그래프의 크기는 지속적으로 확장되고 있다. 지식 그래프는 주로 트리플이 연결된 RDF로 표현되며, 많은 RDF 저장소들이 RDF 데이터를 압축된 형태의 ID로 변환한다. 그러나 RDF 데이터의 크기가 특정 기준 이상으로 클 경우, 테이블 탐색으로 인한 높은 처리 시간과 메모리 오버헤드가 발생한다. 본 논문에서는 해시 ID 매핑 테이블 기반 RDF 변환을 분산 병렬 프레임워크인 맵리듀스에서 처리하는 방법을 제안한다. 제안한 방법은 RDF 데이터를 정수 기반 ID로 압축 변환하면서, 처리 시간을 단축하고 메모리 오버헤드를 개선한다. 본 논문의 실험 결과, 약 23GB의 LUBM 데이터에 제시한 방법을 적용했을 때, 크기는 약 3.8배 가량 줄어들었으며 약 106초의 변환 시간이 소모되었다.

  • PDF

"이거 어디서 사?" - Mask R-CNN 기반 객체 분할을 활용한 패션 아이템 검색 시스템 ("Where can I buy this?" - Fashion Item Searcher using Instance Segmentation with Mask R-CNN)

  • 정경희;최하늘;;김현성;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.465-467
    • /
    • 2022
  • Mobile phones have become an essential item nowadays since it provides access to online platform and service fast and easy. Coming to these platforms such as Social Network Service (SNS) for shopping have been a go-to option for many people. However, searching for a specific fashion item in the picture is challenging, where users need to try multiple searches by combining appropriate search keywords. To tackle this problem, we propose a system that could provide immediate access to websites related to fashion items. In the framework, we also propose a deep learning model for an automatic analysis of image contexts using instance segmentation. We use transfer learning by utilizing Deep fashion 2 to maximize our model accuracy. After segmenting all the fashion item objects in the image, the related search information is retrieved when the object is clicked. Furthermore, we successfully deploy our system so that it could be assessable using any web browser. We prove that deep learning could be a promising tool not only for scientific purpose but also applicable to commercial shopping.

Concrete Reinforcement Modeling with IFC for Automated Rebar Fabrication

  • LIU, Yuhan;AFZAL, Muhammad;CHENG, Jack C.P.;GAN, Vincent J.L.
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.157-166
    • /
    • 2020
  • Automated rebar fabrication, which requires effective information exchange between model designers and fabricators, has brought the integration and interoperability of data from different sources to the notice of both academics and industry practitioners. Industry Foundation Classes (IFC) was one of the most commonly used data formats to represent the semantic information of prefabricated components in buildings, whereas the data format utilized by rebar fabrication machine is BundesVereinigung der Bausoftware (BVBS), which is a numerical data structure exchanging reinforcement information through ASCII encoded files. Seamless transformation between IFC and BVBS empowers the automated rebar fabrication and improve the construction productivity. In order to improve data interoperability between IFC and BVBS, this study presents an IFC extension based on the attributes required by automated rebar fabrication machines with the help of Information Delivery Manual (IDM) and Model View Definition (MVD). IDM is applied to describe and display the information needed for the design, construction and operation of projects, whereas MVD is a subset of IFC schema used to describe the automated rebar fabrication workflow. Firstly, with a rich pool of vocabularies practitioners, OmniClass is used in information exchange between IFC and BVBS, providing a hierarchy classification structure for reinforcing elements. Then, using International Framework for Dictionaries (IFD), the usage of each attribute is defined in a more consistent manner to assist the data mapping process. Besides, in order to address missing information within automated fabrication process, a schematic data mapping diagram has been made to deliver IFC information from BIM models to BVBS format for better data interoperability among different software agents. A case study based on the data mapping will be presented to demonstrate the proposed IFC extension and how it could assist/facilitate the information management.

  • PDF

판결문과 8하원칙에 기반한 인공지능 범죄 예측 모델링 (AI Crime Prediction Modeling Based on Judgment and the 8 Principles)

  • 정혜성;조은비;장정현
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.99-105
    • /
    • 2023
  • 4차 산업혁명 시대의 흐름에 발맞춰 형사사법 분야에서는 효율적인 법률서비스 제공을 위해 인공지능을 활용한 리걸테크(Legaltech)에 주목하고 있다. 본 논문은 국내 형사사법 분야의 리걸테크 활용 가능성을 증대시키기 위해 순환신경망(RNN)을 적용할 수 있는 범죄 예측 모델을 제시한다. 이를 위하여 판결문상 기술된 범죄사실에 기반하여 스크립트 분석기법 활용을 통해 범행 과정을 전·중·후 단계로 구분하였다. 또한, 각 시점에 따라 범죄의 수법과 증거 등을 수사 8하원칙이 가지는 문장 구성 요소와 한국어 품사 구성에 기반하여 객체·행위·환경으로 분류하였다. 이 연구에서 도출된 사건 요약 분석 틀은 특정 범죄 수법의 전형적인 패턴을 파악하기에 용이하며 상황적 범죄예방 전략을 수립하는데 기여할 수 있다. 나아가 이 연구의 결과는 향후 후속연구에서의 RNN모델 기반 범죄 상황 예측 데이터 생성 연구에 유용한 참고자료로 활용될 수 있을 것이다.

Efficient Representation of Pore Flow, Absorption, Emission and Diffusion using GPU-Accelerated Cloth-Liquid Interaction

  • Jong-Hyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권6호
    • /
    • pp.23-29
    • /
    • 2024
  • 본 논문에서는 옷감과 입자 기반 유체 해법인 SPH(Smoothed particle hydrodynamics)를 이용한 액체 간의 상호작용으로 표현되는 다공성 흐름(Pore flow), 흡수, 방출 그리고 확산 효과를 GPU 기반으로 빠르게 표현할 수 있는 방법을 제안한다: 1) 옷감-액체의 상호작용에 의해 표현되는 다양한 물리적 효과를 GPU 기반으로 표현할 수 있는 통합형 프레임워크, 2) SPH 기반으로 노드의 포화도를 효율적으로 계산하고 이를 주변 Porous 입자들로 전달하는 방법, 3) 유체 흡수 및 방출 방향을 안정적으로 계산하기 위해 다르시 법칙(Darcy's law)을 기반으로 안정성을 개선시키는 방법, 4) Porous 입자들로 흡수되는 과정에서 유체의 흐름 방향에 따라 흡수되는 양을 조절하는 방법, 마지막으로 5) SPH 입자의 최대 질량이 넘지 않도록 방출할 수 있는 방법을 제시한다. 제안하는 방식의 가장 큰 장점은 모든 연산이 GPU에서 계산되고 동작하기 때문에 빠르게 옷감과 유체의 상호작용으로 표현되는 다공성 재질, 다공성 흐름, 흡수, 반사, 확산 등을 모델링할 수 있다.

Spring Security와 Apache Shiro의 CSRF 공격 방어 기법 비교 분석 및 검증 (Comparative Analysis and Validation of CSRF Defense Mechanisms in Spring Security and Apache Shiro)

  • 김지오;남궁다연;전상훈
    • 융합보안논문지
    • /
    • 제24권2호
    • /
    • pp.79-87
    • /
    • 2024
  • 본 논문은 웹 애플리케이션의 증가로 인해 소프트웨어 내 보안 취약점을 이용한 사이버 공격이 증가하고 있다. CSRF(Cross-Site Request Forgery) 공격은 특히 웹 사용자와 개발자에게 심각한 위협으로, 사전에 예방해야하는 공격이다. CSRF는 사용자의 동의 없이 비정상적인 요청을 통해 공격을 수행하는 기법으로, 이러한 공격으로부터 웹 애플리케이션을 보호하기 위한 방법은 매우 중요하다. 본 논문에서는 Spring Security와 Apache Shiro 두 프레임워크를 통해 CSRF 방어에 대한 성능을 비교 분석하고 검증하여, 효과적으로 적용 가능한 프레임워크를 제안한다. 실험 결과, 두 프레임워크 모두 CSRF 공격 방어에 성공하였으나, Spring Security는 평균 2.55초로 Apache Shiro의 5.1초보다 더 빠르게 요청을 처리하였다. 이러한 성능 차이는 내부 처리 방식과 최적화 수준의 차이에서 비롯되었으며, 시스템 자원 사용 측면에서는 두 프레임워크 간에 차이가 없었다. 따라서 높은 성능과 효율적인 요청 처리가 요구되는 환경에서는 Spring Security가 더 적합하며, Apache Shiro는 개선이 필요하다. 이 결과는 웹 애플리케이션의 보안 아키텍처 설계 시 중요한 참고 자료로 활용되기를 기대한다.

포괄적 IT 자산관리의 자동화에 관한 연구 (Study on Automation of Comprehensive IT Asset Management)

  • 황원섭;민대환;김정환;이한진
    • 한국IT서비스학회지
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2024
  • The IT environment is changing due to the acceleration of digital transformation in enterprises and organizations. This expansion of the digital space makes centralized cybersecurity controls more difficult. For this reason, cyberattacks are increasing in frequency and severity and are becoming more sophisticated, such as ransomware and digital supply chain attacks. Even in large organizations with numerous security personnel and systems, security incidents continue to occur due to unmanaged and unknown threats and vulnerabilities to IT assets. It's time to move beyond the current focus on detecting and responding to security threats to managing the full range of cyber risks. This requires the implementation of asset Inventory for comprehensive management by collecting and integrating all IT assets of the enterprise and organization in a wide range. IT Asset Management(ITAM) systems exist to identify and manage various assets from a financial and administrative perspective. However, the asset information managed in this way is not complete, and there are problems with duplication of data. Also, it is insufficient to update of data-set, including Network Infrastructure, Active Directory, Virtualization Management, and Cloud Platforms. In this study, we, the researcher group propose a new framework for automated 'Comprehensive IT Asset Management(CITAM)' required for security operations by designing a process to automatically collect asset data-set. Such as the Hostname, IP, MAC address, Serial, OS, installed software information, last seen time, those are already distributed and stored in operating IT security systems. CITAM framwork could classify them into unique device units through analysis processes in term of aggregation, normalization, deduplication, validation, and integration.