• Title/Summary/Keyword: sodium persulfate

Search Result 63, Processing Time 0.022 seconds

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Latex Modified Concrete (라텍스 개질 콘크리트용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1076-1081
    • /
    • 2012
  • For the purpose of development of the latex suitable for latex modified concrete, experimental researches on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization and application to concrete were performed. Sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate were selected as anionic emulsifiers, and nonylphenoxy poly(ethyleneoxy) ethanols (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were used as redox initiator, besides $Na_2HPO_4$ and $K_2CO_3$ as electrolytes. Polymerization recipe of latex suitable for latex modified concrete were suggested from the experimental researches on the effects of anionic emulsifiers and their concentration on the polymerization stability, and the effect of electrolytes concentration on the particle size of latex. Physical properties, such as slump, air contents, compressive and flexural strength, of latex prepared by suggested polymerization recipe were examined. The experimental results showed that latex modified concrete satisfied the quality standards in slump and air contents. Furthermore, it was turned out that the compressive and the flexural strength of latex modified concrete with 28 days curing time showed appreciably improvements.

Decomposition of Acetylsalicylic Acid by Gamma Ray (감마선 조사에 의한 Acetylsalicylic Acid의 분해)

  • Ahn, Young Deok;Lee, Kyoung-hwon;Lee, O Mi;Kim, Tae-Hun;Jung, In ha;Yu, SeungHo;Lee, Myun-Joo
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.253-258
    • /
    • 2011
  • Acetylsalicylic acid (ASA) has been issued recently in contaminated water environments because of potential impacts on ecosystem and public health. This study was aimed at investigating the possibility of ASA degradation using gamma ray irradiation. In addition, the use of sodium persulfate, hydrogen peroxide, ferrous sulfate were tested in order to examine a synergistic effect with gamma ray. The absorbed dose was ranged from 0.2 to 10 kGy and the concentration of oxidants were from 0.1 to 10 mM in this study. The concentration of ASA was gradually decreased corresponding to the increase of the absorbed dose. When soudium persulfate was simultaneously applied, most of the parent compound was completely degraded even at a low dose of 0.8 kGy. The removal efficiency of total organic carbon was 90% even at the highest dose of 10 kGy without sodium persulfate. However, the efficiency was dramatically enhanced up to 98% at the same dose by adding 10 mM of oxidants. It was suggested that hydroxyl radical ($OH{\cdot}$) and sulfate radical ($SO{_4}^-{\cdot}$) were formed in the system and made roles in degrading ASA at the same time.

Evaluation of Early Compressive Strength of Concrete Using Early Strength Improvement Type Cement and Early Strength Activator (조기강도 개선형 시멘트 및 초기수화 촉진 혼화제를 사용한 콘크리트의 조기압축강도 발현특성 평가)

  • Park, Gyu-Yeon;Kim, Gyu-Yong;Choe, Gyoeng-Choel
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.322-328
    • /
    • 2014
  • In this study, revelation performance of concrete at early age according to types of cement, water reducing ratio of high performance superplasticizer and mixing of accelerator for early hydration was examined aiming for reduction of construction period of framework through securing strength at early age of concrete. It was observed that strength at early age, 5MPa in 12hours, 14MPa in 18hours, is secured by early strength improvement type cement and using promotion admixture for early hydration which are Sodium persulfate, Potassium hydroxide. Therefore cost reduction is expected to be possible in construction site by reducing construction period of frame work.

Characterization of Carboxylated Cellulose Nanocrystals from Recycled Fiberboard Fibers Using Ammonium Persulfate Oxidation

  • KHANJANZADEH, Hossein;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.231-244
    • /
    • 2020
  • As a way of finding value-added materials from waste medium density fiberboard (MDF), this study characterized cellulose nanocrystals (CNCs) isolated by ammonium persulfate (APS) oxidation using recycled MDF fibers. Chemical composition of the recycled MDF fibers was done to quantify α-cellulose, hemicellulose, lignin, nitrogen, ash and extractives. The APS oxidation was performed at 60 ℃ for 16 h, followed by ultrasonication, which resulted in a CNC yield of 11%. Transmission electron microscope images showed that rod-like CNCs had an average length and diameter of 167±47 nm and 8.24±2.28 nm, respectively, which gave an aspect ratio of about 20. The conductometric titration of aqueous CNCs suspension resulted in a carboxyl content of 0.24 mmol/g and the degree of oxidation was 0.04. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy clearly showed the presence of carboxyl group on the CNCs prepared by the APS oxidation. The change of pH of the aqueous CNC suspension from 4 to 7 converted the carboxyl group to sodium carboxylate group. These results showed that the APS oxidation was facile and CNCs had a one-step preparation method, and thus suggested an optimization of the oxidation condition in future.

A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode (과황산계 산화제에 따른 폐LiFePO4 양극재에서 리튬의 침출 효과와 선택적 회수에 대한 연구)

  • Kim, Hee-Seon;Kim, Dae-Weon;Jang, Dae-Hwan;Kim, Boram;Jin, Yun-Ho;Chae, Byung-Man;Lee, Sang-Woo
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.40-48
    • /
    • 2022
  • In waste lithium iron phosphate (LFP) batteries, the cathode material contains approximately 4% lithium. Recycling the constituent elements of batteries is important for resource circulation and for mitigating the environmental pollution. Li contained in the waste LFP cathode powder was selectively leached using persulfate-based oxidizing agents, such as sodium persulfate, potassium persulfate, and ammonium persulfate. Leaching efficiency and waste LFP powder properties were compared and analyzed. Pulp density was used as a variable during leaching, which was performed for 3 h under each condition. The leaching efficiency was calculated using the inductively coupled plasma (ICP) analysis of the leachate. All types of persulfate-based oxidizing agents used in this study showed a Li leaching efficiency over 92%. In particular, when leaching was performed using (NH4)2S2O8, the highest Li leaching percentage of 93.3% was observed, under the conditions of 50 g/L pulp density and an oxidizing agent concentration of 1.1 molar ratio.

Radiation Grafting of Hydrophilic Monomers onto Polyester

  • Park, Jae-Ho;Lee, Chong-Kwang;Lee, Kwang-Jin
    • Nuclear Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.103-114
    • /
    • 1973
  • Radiation grafting of acrylic acid and 4-vinylpyridine at room temperature has been studied by an impregnation method to improve the hygroscopic properties, the antistatic behavior and the dyeability of polyester fabric. Polyester fabric was impregnated with acrylic acid or aqueous emulsion of acrylic acid-4-vinylpyridine by immersion at 25$^{\circ}$or 7$0^{\circ}C$. The impregnated fabric was irradiated under nitrogen gas with ${\gamma}$-rays from Co-60. When acrylic acid grafted polyester fabric was treated with sodium carbonate, calcium acetate and potassium persulfate, tne rate of water absorption was increased and most parts of polyacrylic acid formed were extracted off from the fabric with 0.1% solution of sodium hydroxide at 10$0^{\circ}C$. In the case of the impregnation of a mixture of acrylic acid and 4-vinylpyridine the petcent of grafting has been shown to be proportional to the ratio of 4-VP/AA and radiation dost. Estimating by contact angle measurements of water on the various polymer surfaces, the antistatic behavior was decreased with the increase of grafting percent. The investigation of electron micrograph disclosed the existence of certain type of discontinuities in the acrylic acid grafted polyester fiber which was treated with various salts.

  • PDF

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Polymer Cement Mortar (폴리머 시멘트 몰타르 포장재용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.789-794
    • /
    • 2012
  • For the purpose of development of the latex suitable for polymer cement mortar, experiments on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization were performed. Methyl methacrylate, methacrylic acid and acrylic acid were selected as carboxylic co-monomer, styrene and butadiene as monomer, sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate as anionic emulsifiers, and nonylphenoxy poly (ethyleneoxy) ethanol (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were also used as redox initiator, and sodium monohydrogen phosphate and potassium carbonate as electrolytes. The effects of categories and concentration of carboxylic co-monomer, molecular weight control agent, crosslinking agent, and styrene/butadiene monomer ratio on the characteristics of latex were investigated. Polymerization recipes for preparation of polymer cement mortar could be proposed. The prepared latexes were tested for the physical properties such as compressive and flexural strength when latexes were mixed with cement mortar. The results showed that the latex could be adapted to polymer cement mortar. Also, it was recognized that the compressive and flexural strength were exhibited 25.4% and 45.3% respectively higher improvement than the quality standards at 28 days curing time.

Synthesis of Surface Crosslinked Poly(sodium acrylate) for Delayed Absorption in Cement Solution (시멘트 수용액에서 흡수 지연을 위한 Crosslinked Poly(sodium acrylate)의 표면 가교)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • To study the effect of incorporation of a surface crosslinking layer on a crosslinked poly (sodium acrylate) (cPSA) absorbent with ethylene glycol dimethacrylate CEGDMA), we synthesized several surface crosslinked cPSAs with EGDMA by an inverse emulsion polymerization method to delay the absorption of excess water in concrete, Liquid paraffin was used as a continuous phase. cPSA was synthesized with acrylic acid (AA) neutralized with aqueous 8 M sodium hydroxide solution as a monomer, N,N-methylene bisacrylamide (MBA) as crosslinking agent and ammonium persulfate (APS) and sodium metabisulfite (SMBS) as a redox initiator system by inverse emulsion polymerization. FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with cPSA and cPSA-EGDMAs. The swelling ratios of synthesized absorbents were evaluated from the absorption in deionized water, cement saturated aqueous solution and aqueous solution of calcium hydroxide (pH 12). Equilibrium swelling times for cPSA and surface crosslinked cPSA with EGDMA were 2 and 3 hrs, respectively. We also observed an increase in setting time of the cement and an increase in the compressive strength of mortar by addition of the synthesized cPSA-EGDMA.

Synthesis on the Core-Shell Polymer of Silicone Dioxide/Styrene Using Sodium Dioctyl Sulfosuccinate (EU-DO133L) as a Surfactant (계면활성제 Sodium Dioctyl Sulfosuccinate (EU-DO133L)을 사용한 이산화규소/스티렌의 코어-셀 고분자의 합성)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.183-187
    • /
    • 2010
  • Core-Shell polymers of silicone dioxide-styrene system were prepared by sequential emulsion polymerization. In inorganic/organic Core-Shell composite particle polymerization, silicone dioxide adsorbed by surfactant sodium dioctyl sulfosuccinate (EU-DO133L) was prepared initially and then core silicone dioxide was encapsulated emulsion by sequential emulsion polymerization using styrene at the addition of potassium persulfate (KPS) as an initiator. We found that $SiO_2$ core shell of $SiO_2$/styrene structure was formed when polymerization of styrene was conducted on the surface of $SiO_2$ particles, and the concentration sodium dioctyl sulfosuccinate (EU-DO133L) was 0.5~2.0g. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by scanning electron microscope(SEM).

Preparation and Super-Water-Absorbency of Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate) (Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate)의 제조와 고흡수 특성)

  • Zhang Yuhong;Deng Min;He Peixin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.286-292
    • /
    • 2006
  • Super water-absorbent resins were prepared by inverse suspension copolymerization of sodium acrylate, acrylamide and 2-hydroxyethyl acrylate using N, N'-methylene-bis-acrylamide as cross-linker. For the suspension copolymerization, monohexadecyl phosphate was employed as the dispersing agent, cyclohexane as the dispersing medium and potassium persulfate as the initiator. The dependence of water-absorption capacity on the amount of crosslinking agent, oil/water ratio, degree of neutralization and the composition of the copolymer were systematically investigated. Furthermore, the swelling kinetics of the super water-absorbent copolymer was carried out. The absorption of the resins is more than 1800 g/g for deionized water and 100 g/g for 0.9% NaCl solution, respectively. The copolymers showed an increased salt resistance and enhanced water retention of soil.