• Title/Summary/Keyword: sodalime-sodalime bonding

Search Result 4, Processing Time 0.021 seconds

Sodalime-sodalime Electrostatic Bonding using Amorphous Silicon Interlayer and Its Application to FEA Packging (비정질 실리콘 박막을 이용한 Sodalime-Sodalime 정전 열 접합 및 FEA Packaging 응용)

  • Ju, Byeong-Kwon;Lee, Duck-Jung;Choi, Woo-Beom;Kim, Young-Cho;Lee, Nam-Yang;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.656-661
    • /
    • 1999
  • As a fundamental study for FED tubeless packaging, sodalime-sodalime electrostatic bonding was performed by using on the developed bonding mechanism. Thebonding properties of the bonded sodalime-sodalime structure were investigated through SEM and SIMS analyses. Mo-tip FEA was vacuum-packaged by the developed bonding process and the packaged device generated the field emission current.

  • PDF

Packaging of Vacuum Microelectronic Device using Electrostatic Bonding (정전 열 접합에 의한 진공전자소자의 패키징)

  • Ju, Byung-Kwon;Lee, Duck-Jung;Oh, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1004-1006
    • /
    • 1998
  • Mo-tip FED of 1 inch diagonal was vacuum sealed using sodalime-to-sodalime glass electrostatic bonding under $10^{-7}torr$. The bonding properties of the bonded sodalime-to sodalime structure were investigated and emission characteristic of packaged FED panel was measured.

  • PDF

Study on Vacuum Packaging of Field Emission Display (Field Emission Display의 고진공 실장에 관한 연구)

  • Lee, Duck-Jung;Ju, Byeong-Kwon;Jang, Jin;Oh, Myong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.103-106
    • /
    • 1999
  • In this paper, we suggest the FED packaging technology that have 4mm thickness, using sodalime glass-to-sodalime glass electrostatic bonding. It based on conventional silicon-glass bonding. The silicon film was deposited an around the exhausting hole on FED backside panel. And then, the silicon film of panel was successfully bonded with capping(bare) glass in vacuum environment and the FED panel was vacuum-sealed. In this method, we could achieve more 153 times increased conductance and 200 times increased vacuum efficiency than conventional tube packaging method. The vacuum level in panel, by SRG test, was maintained about low 10$_{-4}$ Torr during above two months And, the light emission was observed to 0.7-inch tubeless packaged FED. Then anode current was 34 $\mu$ A. Emission stability was constantly measured for 10 days.

  • PDF

Vacuum-Electrostatic Bonding Properties of Glass-to-Glass Substrates (유리-유리 기판의 진공-정전 열 접합 특성)

  • 주병권;이덕중;이윤희
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • As an essential technology for the FED, VFD and PDP packaging having merits of no glass frit and no glass tube usage, two sodalime glass substrates were electrostatically-bonded in a vacuum environment, and the bond properties were compared with the case of bonding in atmosphere. The glass wafer pairs bonded in vacuum using a-Si interlayer had a relatively lower bond strength than the ones bonded in atmosphere under same bonding conditions (temperature and voltage). And the bond strength was increased in the case of oxygen ambient. Through the XPS and SIMS analyses fur the surface region of a-silicon and bulk glass, it might be concluded that the lower bonding strength was originated from the inactive silicon oxide growth occurred during the electrostatic bonding process due to oxygen deficiency in vacuum.

  • PDF