• 제목/요약/키워드: sod gene

검색결과 226건 처리시간 0.019초

Genomic Structure of the Cu/Zn Superoxide Dismutase(SOD1) Gene from the Entomopathogenic Fungus, Cordyceps pruinosa

  • Park, Nam Sook;Jin, Byung Rae;Lee, Sang Mong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제39권2호
    • /
    • pp.67-73
    • /
    • 2019
  • The genomic structure of the Cu/Zn superoxide dismutase (SOD1) gene from the entomopathogenic fungus, Cordyceps pruinosa was characterized. The SOD1 gene of C. pruinosa spans 947 nucleotides and consisted of four exons encoding for 154 amino acids and three introns. Four exons of the SOD1 gene are composed of 13, 331, 97 and 20 nucleotides respectively. Homology search of amino acid sequences of the SOD1 gene of C. pruinosa with another 13 fungi species showed higher sequence similarity of 69% ~ 95% and had the most highest sequence identity of 95% with Beauveria bassiana and Cordyceps militaris, which can easely infect domesticated Bombyx mori and another wild lepidopteran species in artificial or natual manner of infection. This SOD1 gene sequence showed copper, zinc and beta-barrel fold sites. Homology search showed that the Cu/Zn SOD1 gene from the entomopathogenic fungus, C. pruinosa is an orthologous gene homolog present in different species of organism whose ancestor predates the split between the relating species. In addition, C. pruinosa SOD1 gene is placed together within the ascomycetes group of fungal clade. From these results it is concluded that C. pruinosa SOD1 gene is orthologous gene having the same or very similar functions with a common evolutionary ancestor.

Copper, Zinc-Superoxide Dismutase (Cu/Zn SOD) Gene During Embryogenesis of Bombyx mori: Molecular Cloning, Characterization and Expression

  • Hong, Sun-Mee;Kang, Seok-Woo;Goo, Tae-Won;Kim, Nam-Soon;Lee, Jin-Sung;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제13권1호
    • /
    • pp.23-30
    • /
    • 2006
  • BmCu/Zn SOD was isolated from early embryo of Bombyx mori using microarray analysis. The BmCu/Zn SOD gene was observed during the early embryonic stage with the strongest signal found at the unfertilizaion, fertilization and blastoderm stages. The BmCu/Zn SOD gene encodes a protein of 154 amino acids with a calculated Mr of 15 kDa. The deduced amino acid sequence of BmCu/Zn SOD indicated that the residues that form on the Cu/Zn binding site are conserved and that the sequence is a 60% identity to that of M. domestica. In a phylogenetic tree, Bm SOD was also close to Drosophila SODs rather than other insect SODs. The BmCu/Zn SOD gene exists as a single copy in the genome. Transcripts of BmCu/Zn SOD cDNA were identified by northern blot analysis. The expression of the BmCu/Zn SOD gene was observed weakly in most of larvae, pre-pupae, pupae and adult tissues. Also, the BmCu/Zn SOD gene was observed in early embryonic stage. Although the roles of SODs remains to be further elucidated, the high expression of BmCu/Zn SOD gene at before 24 h post fertilization suggests that this gene is of general importance during early embryogenesis in the Bombyx mod.

Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

  • Baek, Kwang-Hyun;Skinner, Daniel Z.
    • 한국환경농학회지
    • /
    • 제29권1호
    • /
    • pp.77-85
    • /
    • 2010
  • Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese superoxide dismutase (MnSOD) gene isolated from wheat. Although all QC 871 transformants grown at $37^{\circ}C$ expressed mRNA of MnSOD variants, only MnSOD2 transformant had functional SOD activity. MnSOD3 expressed active protein when grown at $22^{\circ}C$, however, MnSOD1 did not express functional protein at any growing and induction conditions. The sequence comparison of the wheat MnSOD variants revealed that the only amino acid difference between the sequence MnSOD2 and sequences MnSOD1 and 3 is phenylalanine/serine at position 58 amino acid. We made MnSOD2S58F gene, which was made by altering the phenylalaine to serine at position 58 in MnSOD2. The expressed MnSOD2S58F protein had functional SOD activity, even at higher levels than the original MnSOD2 at all observed temperatures. These data suggest that amino acid variation can result in highly active forms of MnSOD and the MnSOD2S58F gene can be an ideal target used for transforming crops to increase tolerance to environmental stresses.

Genomic Structure of the Cu,Zn Superoxide Dismutase (SOD1) Gene of Paecillomyces tenuipes and Paecilomyces sp.

  • Park Nam Sook;Lee Kwang Sik;Lee Sang Mong;Je Yeon Ho;Park Eunju;Sohn Hung Dae;Jin Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제10권1호
    • /
    • pp.35-43
    • /
    • 2005
  • We describe here the complete nucleotide sequence and the exon-intron structure of the Cu,Zn superoxide dismutase (SOD1) gene of Paecilomyces tenuipes and Paecilomyces sp. The SOD1 gene of P. tenuipes spans 966 bp, and consisted of three introns and four exons coding for 154 amino acid residues. Three unambiguous introns in P. tenuipes separate exons of 13, 332, 97, and 20 bp, all exhibiting exon sizes identical to Cordyceps militaris SOD1 gene. The SOD1 gene of Paecilomyces sp. contains 946 bp and consisted of four introns and five exons coding for 154 amino acid residues. Five exons of Paecilomyces sp. SOD1 are composed of 13, 180, 152, 97, and 20 bp. Interestingly, this result showed that the total length of exons 2 (180 bp) and 3 (152 bp) of Paecilomyces sp. SOD1 is same to exon 2 length (332 bp) of C. militaris SOD1 and P. tenuipes SOD1. The deduced amino acid sequence of the P. tenuipes SOD1 showed $95\%$ identity to C. militaris SOD1 and $78\%$ to Paecilomyces sp. SOD1. Phylogenetic analysis confirmed that the C. militaris SOD1, P. tenuipes SOD1 and Paecilomyces sp. SOD1 are placed together within the ascomycetes group of fungal clade.

Cloning, DNA Sequence Determination, and Analysis of Growth-Associated Expression of the sodF Gene Coding for Fe- and Zn-Containing Superoxide Dismutase of Streptomyces griseus

  • Kim, Ju-Sim;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권5호
    • /
    • pp.700-706
    • /
    • 2000
  • Iron- and zinc-containing superoxide dismutase (FeZnSOD) and nickel-containing superoxide dismutase (NiSOD) are cytoplamic enzymes in Streptomyces griseus. The sodF gene coding for FeZnSOD was cloned from genomic Southern hybridization analysis with a 0.5-kb DNA probe, which was PCR-amplified with facing primers corresponding to the N-terminal amino acid of the purified FeZnSOD of S. griseus and a C-terminal region which is conserved among bacterial FeSODs and MnSODs. The sodF open reading frame (ORF) was comprised of 213 amino acid (22,430 Da), and the deduced sequence of the protein was highly homologous (86% identity) to that of FeZnSOD of Streptomyces coelicolor. The FeZnSOD expression of exponentially growing S. griseus cell was approximately doubled as the cell growth reached the early stationary phase. The growth-associated expression of FeZnSOD was mainly controlled at the transcriptional level, and the regulation was exerted through the 110 bp regulatory DNA upstream from the ATG initiation codon of the sodF gene.

  • PDF

Transfer of SOD2 or NDP kinase 2 genes into purebred lines of petunia

  • Lee, Su-Young;Han, Bong-Hee;Noh, Eun-Woon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • 제36권2호
    • /
    • pp.144-148
    • /
    • 2009
  • The transfer of Mn-Superoxide Dismutase (SOD2) gene, complex gene (SA) of CuZnSOD and ascorbate peroxidase (APX), and NDP kinase 2 (NDPK2) gene into Korean 4 cultivars (cvs. Millenium White, Glory Blue, Glory Red, and Glory Purple) and 15 purebred lines of petunia was conducted using Agrobaterium-mediated technique. Two (Wongyo A2-16 and A2-36) of 15 purebred lines and one (cv. Glory Red) of 4 cultivars were effective for the transfer of SOD2 gene. The putative transgenic plants survived on the 2nd selection medium were 124. From PCR analysis, 118 (derived from 4 cultivars and 2 purebred lines) of 124 plants were confirmed to contain marker (npt II ) gene, while 58 of 118 plants did not have target genes. There were no plants with both npt II and SA genes. Twenty seven of 28 SOD2 transgenic plants were re-confirmed as transformants by Sothern analysis. SOD2 and NDPK2 genes were expressed in the transgenic petunias as the ratio of 77.8 to 100.0 % and 23.5%, respectively. T1 seeds were obtained from 36 acclimated transgenic plants (SOD2 34 plus NDPK2) in a glasshouse by self-pollination.

Deletion of Superoxide Dismutase Gene of Bombyx mori Nuclear Polyhedrosis Virus Affects Viral DNA Replication

  • Wang, Wenbing;Song, Zhixiu;Ji, Ping;Wu, Jun;Zhang, Zhifang;He, Jialu;Wu, Xiangfu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권2호
    • /
    • pp.225-228
    • /
    • 2004
  • Superoxide dismutase (SOD) is an important enzyme which catalyzes superoxide radicals to hydrogen peroxide. A Cu, Zn sod-like gene was found in Bombyx mori nuclear polyhedrosis virus encoding 151 amino acids. To demonstrate its function, a recombinant virus named dsBmNPV with deleted sod gene was constructed. It was discovered that the sod gene was not essential for viral replication. Studies on growth of budded virus in BmN cells and superoxide dismutase and catalase activities in vivo after dsBmNPV infection showed that the titer of dsBmNPV decreased obviously comparing to wild type BmNPV, the sod gene was effective on genomic DNA replication of baculovirus, the peak of SOD activity of silkworm infected with wt-BmNPV appeared between 36 and 48 hrs post infection, and with dsBmNPV, it did not appear. And the changes of CAT activity after infection were similar to SOD activity.

Isolation and Characterization of the sod2$^{2+}$ Gene Encoding a Putative Mitochondrial Manganese Superoxide Dismutase in Schizosaccharomyces bombe

  • Jeong, Jae-Hoon;Kwon, Eun-Soo;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • 제39권1호
    • /
    • pp.37-41
    • /
    • 2001
  • The fission yeast Schizosaccharomyces pombe contains two distinct superoxide dismutase (SOD) activities, one in the cytosol encoded by the $sod2^{+}$ gene and the other in mitochondria. The $sod2^{+}$ gene encoding putative mitochondrial manganese superoxide dismutase (MnSOD) was isolated from the S. pombe genomic library using a PCR fragment as the probe. The nucleotide sequence of the $sod2^{+}$ gene and its flanking region (4051 bp HindIII fragment) was determined. An intron of 123 nt in size was predicted and confirmed by sequencing the cDNA following reverse transcription PCR. The predicted Sod2p consists of 218 amino acid residues with a molecular mass of 24,346 Da. The deduced amino acid sequence showed a high degree of homology with other MnSODs, especially in the metal binding residues at the active site and their relative positions. The transcriptional start site was mapped by primer extension at 231 at upstream from the ATG codon. A putative TATA box(TATAAAA) was located 58 nt upstream from the transcriptional start site and putative polyadenylation sites were located at 1000, 1062, and 1074 nt downstream from the ATG start codon.

  • PDF

Molecular Cloning of the Superoxide Dismutase Gene from Orientia tsutsugamushi, the Causative Agent of Scrub Typhus

  • Koh, Young-Sang;Yun, Ji-Hyun;Kim, Se-Jae
    • Journal of Microbiology
    • /
    • 제40권2호
    • /
    • pp.151-155
    • /
    • 2002
  • A Superoxide Dismutase (SOD) gene from the obligate intracellular bacterium Orientia tsutsugamushi has been cloned by using the polymerase chain reaction with degenerate oligonucleotide primers corresponding to conserved regions of known SODs. Nucleotide sequencing revealed that the predicted amino acid sequence was significantly more homologous to known iron-containing SODs (FeSOD) than to manganese-containing SODs (MnSOD). Conserved regions in bacterial FeSOD could also be seen. Isolation of the oriential SOD gene may provide an opportunity to examine its role in the intracellular survival of this bacterium.

PAH를 분해할 수 있는 Pseudomonas rhodesiae KK1의 SOD 유전자의 동정 및 분자학적 특성 분석 (Identification and Molecular Characterization of Superoxide Dismutase Genes in Pseudomonas rhodesiae KK1 Capable of Polycyclic Aromatic Hydrocarbon Degradation)

  • 이동헌;오계헌;김승일;강형일
    • 생명과학회지
    • /
    • 제26권1호
    • /
    • pp.75-82
    • /
    • 2016
  • Pseudomonas rhodesiae KK1은 이미 주요한 환경오염물질인 anthracene, naphthalene, phenanthrene과 같은 다환성 방향족 화합물(PAHs)을 분해할 수 있음을 보고한 바 있다. 흥미롭게도, superoxide dismutase를 비롯한 항산화 유전자는 환경오염물질에 반응하여 다른 수준으로 발현됨이 알려져 있다. 본 연구는 균주 KK1에서 PAHs 분해에 간접적으로 관계될 것으로 여겨지는 superoxide dismutase 유전자의 존재를 동정하고 세 가지 PAHs를 기질로 하여 생장한 세포에서 superoxide dismutase 유전자의 발현 양상을 조사하고자 수행하였다. P. rhodesiae KK1에서 항산화 기작에 관여하는 두 가지지 형의 superoxide dismutase인 Mn-superoxide dismutase (sodA)와 Fe-superoxide dismutase (sodB) 유전자를 동정하고 그 특성을 규명하였다. 균주 KK1에서 발견된 sodA 유전자는 141개의 아미노산 유전자를 기준으로 P. fluorescens Pf-5의 Mn-sod와 95%, sodB 유전자는 135개 아미노산을 기준으로 P. fluorescens Pf-5의 Fe-sod와 99%의 가장 높은 상동성을 나타내었다. sod 유전자 단편을 탐침자로 사용한 Southern 혼성화 반응 결과 적어도 두 개 이상의 superoxide dismutase 유전자가 균주 KK1에 존재함을 규명하였다. RT-PCR 분석을 통해 sodA 및 sodB 유전자들은 anthracene보다 naphthalene과 phenanthrene에 반응하여 더 강하게 발현함을 보여주었다. 포도당과 PAHs를 기질로 사용하여 생장한 세포에서 sodA와 sodB 유전자는 활성 상태로 존재함이 밝혀졌다.