• Title/Summary/Keyword: social implications of nanotechnology

Search Result 3, Processing Time 0.02 seconds

A Study on the Social Issues of Nanotechnology (나노기술을 둘러싼 사회적 쟁점 연구)

  • Lee Young-Hee
    • Journal of Science and Technology Studies
    • /
    • v.4 no.1 s.7
    • /
    • pp.59-82
    • /
    • 2004
  • Nanotechnology is a rapidly expanding field, focused on the creation of functional materials, devices, and systems through the control of matter on the nanometer scale. Recently many countries including Korea are rushing into promoting research and development of nanotechnology. Because the nanoscale is not just other step toward miniaturization, but a qualitatively new scale, progress in nanotechnology will have very far-reaching social, ethical, and environmental impacts. This paper aims to examine social issues and implications of nanotechnology development. To do so, this paper divides the issues around nanotechnology into several sub-issues: environmental, health-related, and societal issues. And then this paper reviews the debates and disputes around those sub-issues. Based on this review, this paper proposes some policy recommendation.

  • PDF

Study of US/EU National Innovation Policies Based on Nanotechnology Development, and Implications for Korea

  • Lim, Jung Sun;Shin, Kwang Min;Yoon, Jin Seon;Bae, Seoung Hun
    • Journal of Information Science Theory and Practice
    • /
    • v.3 no.1
    • /
    • pp.50-65
    • /
    • 2015
  • Recently US/EU governments are utilizing nanotechnology as a key catalyst to support national innovation policies with economic recovery goals. US/EU nano policies have been serving as a global model to various countries, including Korea. So the authors initially seek to understand US/EU national innovation policy interconnections, and then find the role of nanotechnology development within. To strengthen national policy coherence, nanotechnology development strategies are under evolution as an innovation catalyst for promoting commercialization. To strategically support nano commercialization, EHS (Environmental, Health, Safety) and informatics are invested as priority fields to strengthen social acceptance and sustainability of nano enabled products. The current study explores US/EU national innovation policies including nano commercialization, EHS, and Informatics. Then obtained results are utilized to analyze weaknesses of Korean innovation systems of connecting creative economy and nanotechnology development policies. Then ongoing improvements are summarized focusing on EHS and informatics, which are currently prominent issues in international nanotechnology development.

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.