• Title/Summary/Keyword: snow ice

Search Result 123, Processing Time 0.031 seconds

Evaluation of steel corrosion and Concrete Freeze-Thaw durability on the Liquid non-chloride deicer (액상 비염화물계 제설제의 강재 부식성 및 콘크리트 동결융해 내구성 평가)

  • Lee, Beung-Duk;Kim, Hyun-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.529-532
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. Particularly, it has been recognized that chlorides present in deicing agents can significantly increase concrete surface scaling. In severe cases, scaling can result in dislodgement of coarse aggregate. This research estimates that pH and test of specific pollutants, dynamic modulus of elasticity for freeze-thaw test of concrete were higher than those NaCl, $CaCl_2$, and NaCl+$CaCl_2$(7:3, w/w), also weight losses for scaling test of concrete were much lower than those of NaCl, $CaCl_2$, and NaCl+$CaCl_2$(7:3, w/w).

  • PDF

Comparative Study on Freeze-Thaw Durability of General Concrete and Pavement Concrete (일반콘크리트와 포장콘크리트의 동결융해 내구성에 대한 비교 연구)

  • Kim, Hyun-Joong;Lee, Beung-Duk;Lee, Ju-Gang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.561-564
    • /
    • 2008
  • Concrete scaling is the progressive surface deterioration of susceptible subjected to freeze-thaw cycling in the presence of moisture. Particularly, it has been recognized that chlorides present in deicing agents can significantly increase concrete surface scaling. Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. In this study, Use of (40, 27, 21MPa) pavement concrete analyze freeze-thaw test and scaling on the chlorides present.

  • PDF

A Compound Deterioration Assessment of Concrete Subjected In Freezing-Thawing and Chloride Attack (동결융해와 염해의 복합작용을 받는 콘크리트의 내구성능 저하 평가)

  • 고경택;김도겸;김성욱;조명석;송영철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.397-405
    • /
    • 2001
  • In clod weather regions, a strong seasonal wind brings sea salts to the land. In addition to it, recently, the spreading amount of deicing salts has increased numerously for purpose of removing snow and ice. Thus the salts environment around concrete structures becomes so severe that various damages of concrete due to applied salts will be brought up. Much of countries such as America, Europe etc. is carried out study for effects of deicing salts on concrete. However, there are not test methods for deterioration of concrete subjected to both freezing-thawing and chloride in Korea. In this study, we carried out test for the compound deterioration subjected to both freezing-thawing and chloride attack, to investigate the effects of sodium chloride on the deterioration of concrete. The test was performed to investigate the effects of cement type, strength and air content on the scaling deterioration of concrete. As a result, the scaling deterioration was accelerated in the presence of salts. And the resistance to scaling was strongly influenced by the type of cement, the strength and air content of concrete.

A pplication of $CO_2$ Technolgy in Nuclear Decontamination (원자력 제염에서 $CO_2$ 기술 응용)

  • Park, K.H.;Kim, H.W.;Kim, H.D.;Koh, M.S.;Ryu, J.D.;Kim, Y.E.;Lee, B.S.;Park, H.T.
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.62-67
    • /
    • 2001
  • Green technology is being developed up to a point that is feasible not only in an environmental sense, but also in an economical viewpoint. This paper introduces two case studies that applied $CO_2$ technology into nuclear industry. 1) Nuclear laundry : A laundry machine that uses liquid and supercritical $CO_2$ as a solvent for decontamination of contaminated working dresses in nuclear power plants was developed. The machine consists of a 16 liter reactor, a recovery system with compressors, and storage tanks. All $CO_2$ used in cleaning is fully recovered and reused in next cleaning, resulting in no production of secondary nuclear waste. Decontamination factor is still lower than that in the methods currently used in the plant. Nuclear laundry using $CO_2$ looks promising with technical improvements-surfactants and mechanical agitation. 2) $CO_2$ nozzle decontamination : An adjustable nozzle for controlling the size of dry ice snow was developed. Using the developed nozzle, a surface decontamination device was made. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution.

  • PDF

Long-term Changes in Wintertime Precipitation and Snowfall over Gangwon Province (강원 지역의 장기 겨울철 강수 및 강설 변화의 경향 분석)

  • Baek, Hee-Jeong;Ahn, Kwangdeuk;Joo, Sangwon;Kim, Yoonjae
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.109-123
    • /
    • 2017
  • The effects of recent climate change on hydrological systems could affect the Winter Olympic Games (WOG) because the event is dependent on suitable snow and ice conditions to support elite-level competitions. We investigate the long-term variability and change in winter total precipitation (P), snowfall water equivalent (SFE), and ratios of SFE to P during the period 1973/74~2015/16 in Gangwon province. The climatological percentages of SFE relative to winter total precipitation were 71%, 28%, and 44% in Daegwallyeong, Chuncheon, and Gangneung, respectively. The winter total P, SFE, and SFE/P has decreased (but not significantly), although significant increases of winter maximum and minimum temperature were detected at a 95% confidence level. Notably, a significant negative trend of SFE/P at Daegwallyeong in February, the month of the WOG, was attributable to a larger decrease in SFE related to the increases in maximum and minimum temperature. Winter wet-day minimum temperatures were warmer than climatological minimum temperatures averaged over the study period. The 20-year return values of daily maximum P and SFE decreased in Yongdong area. Since the SFE/P decrease with increasing temperature, the probability of rainfall rather than snowfall can increase if global warming continues.

Characteristics of Traffic Accidents on Highways: An Analysis Based on Patients Treated at a Regional Trauma Center

  • Lee, Sung Yong;Sun, Kyung Hoon;Park, Chan Yong;Kim, Tae Hoon
    • Journal of Trauma and Injury
    • /
    • v.34 no.4
    • /
    • pp.263-269
    • /
    • 2021
  • Purpose: There have been increasing concerns about serious traffic accidents on highways. The purpose of this study was to analyze factors affecting traffic accidents on highways and the severity of the resulting injuries. Methods: This retrospective study was conducted at a regional trauma center. We reviewed 594 patients who had been in 114 traffic accidents on highways from January 2018 to June 2020. We collected demographic data, clinical data, accident-related factors, and meteorological data (weather and temperature). Results: Environmental risk factors were found to be significantly associated with the incidence of traffic accidents on highways. Injury severity and the death rate were higher in sedans than in any other type of vehicle. Tunnels were the most common location of accidents, accounting for 47 accidents (41.2%) and 269 injured patients (45.3%). The injury severity of individuals riding in the driver's seat (front seat) was high, regardless of vehicle type. Three meteorological risk factors were found to be significantly associated with traffic accidents: rainy roads (odds ratio [OR] 2.08; 95% confidence interval [CI] 1.84-3.29; p=0.01), icy or snowy roads (OR 5.12; 95% CI 2.88-7.33; p<0.01), and foggy conditions (OR 2.94; 95% CI 2.15-4.03; p<0.05). Conclusions: The injury severity of patients was affected by seat position and type of vehicle, and the frequency of accident was affected by the location. The incidence of traffic accidents was strongly influenced by meteorological conditions (rain, snow/ice, and fog).

Analysis of Optical Characteristic Near the Cloud Base of Before Precipitation Over the Yeongdong Region in Winter (영동지역 겨울철 스캔라이다로 관측된 강수 이전 운저 인근 수상체의 광학 특성 분석)

  • Nam, Hyoung-Gu;Kim, Yoo-Jun;Kim, Seon-Jeong;Lee, Jin-Hwa;Kim, Geon-Tea;An, Bo-Yeong;Shim, Jae-Kwan;Jeon, Gye-hak;Choi, Byoung-Choel;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.237-248
    • /
    • 2018
  • The vertical distribution of hydrometeor before precipitation near the cloud base has been analyzed using a scanning lidar, rawinsonde data, and Cloud-Resolving Storm Simulator (CReSS). This study mostly focuses on 13 Desember 2016 only. The typical synoptic pattern of lake-effect snowstorm induced easterly in the Yeongdong region. Clouds generated due to high temperature difference between 850 hPa and sea surface (SST) penentrated in the Yeongdong region along with northerly and northeasterly, which eventually resulted precipitation. The cloud base height before the precipitation changed from 750 m to 1,280 m, which was in agreement with that from ceilometer at Sokcho. However, ceilometer tended to detect the cloud base 50 m ~ 100 m below strong signal of lidar backscattering coefficient. As a result, the depolarization ratio increased vertically while the backscattering coefficient decreased about 1,010 m~1,200 m above the ground. Lidar signal might be interpreted to be attenuated with the penetration depth of the cloud layer with of nonspherical hydrometeor (snow, ice cloud). An increase in backscattering signal and a decrease in depolarization ratio occured in the layer of 800 to 1,010 m, probably being associated with an increase in non-spherical particles. There seemed to be a shallow liquid layer with a low depolarization ratio (<0.1) in the layer of 850~900 m. As the altitude increases in the 680 m~850 m, the backscattering coefficient and depolarization ratio increase at the same time. In this range of height, the maximum value (0.6) is displayed. Such a result can be inferred that the nonspherical hydrometeor are distributed by a low density. At this time, the depolarization ratio and the backscattering coefficient did not increase under observed melting layer of 680 m. The lidar has a disadvantage that it is difficult for its beam to penetrate deep into clouds due to attenuation problem. However it is promising to distinguish hydrometeor morphology by utilizing the depolarization ratio and the backscattering coefficient, since its vertical high resolution (2.5 m) enable us to analyze detailed cloud microphysics. It would contribute to understanding cloud microphysics of cold clouds and snowfall when remote sensings including lidar, radar, and in-situ measurements could be timely utilized altogether.

Characteristics Analysis of Snow Particle Size Distribution in Gangwon Region according to Topography (지형에 따른 강원지역의 강설입자 크기 분포 특성 분석)

  • Bang, Wonbae;Kim, Kwonil;Yeom, Daejin;Cho, Su-jeong;Lee, Choeng-lyong;Lee, Daehyung;Ye, Bo-Young;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.227-239
    • /
    • 2019
  • Heavy snowfall events frequently occur in the Gangwon province, and the snowfall amount significantly varies in space due to the complex terrain and topographical modulation of precipitation. Understanding the spatial characteristics of heavy snowfall and its prediction is particularly challenging during snowfall events in the easterly winds. The easterly wind produces a significantly different atmospheric condition. Hence, it brings different precipitation characteristics. In this study, we have investigated the microphysical characteristics of snowfall in the windward and leeward sides of the Taebaek mountain range in the easterly condition. The two snowfall events are selected in the easterly, and the snow particles size distributions (SSD) are observed in the four sites (two windward and two leeward sites) by the PARSIVEL distrometers. We compared the characteristic parameters of SSDs that come from leeward sites to that of windward sites. The results show that SSDs of windward sites have a relatively wide distribution with many small snow particles compared to those of leeward sites. This characteristic is clearly shown by the larger characteristic number concentration and characteristic diameter in the windward sites. Snowfall rate and ice water content of windward also are larger than those of leeward sites. The results indicate that a new generation of snowfall particles is dominant in the windward sites which is likely due to the orographic lifting. In addition, the windward sites show heavy aggregation particles by nearby zero ground temperature that is likely driven by the wet and warm condition near the ocean.

Development of a GNSS Signal Generator Considering Reception Environment of a Vehicle (이동체의 수신 환경을 고려한 GNSS 신호 생성기 개발)

  • Cho, Sung Lyong;Park, Chansik;Hwang, Sang Wook;Choi, Yun Sub;Lee, Ju Hyun;Lee, Sang Jeong;Pack, Jeong-Ki;Lee, Dong-Kook;Jee, Gyu-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.811-820
    • /
    • 2012
  • GNSS signal is vulnerable to jamming signal because of well-known signal structure and weak signal power. For these reasons, the need for analysis of jamming effects and anti-jamming techniques of is increasing. In this paper, a GNSS signal generator is designed which includes a radio wave propagation model for six kind of tactical environments and a body masking model for the reception environment of a vehicle. The radio wave propagation model for downtown, rural, forest, coastline, waste land and snow or ice area is designed using two-ray model. The body masking model is designed the effect which the antenna is affected by the reception environment of a vehicle and radiation pattern from a user configuration. The performance of generated signals from the GNSS signal generator considering reception environment of a vehicle is evaluated by a commercial GPS L1 receiver(NordNav) in normal and jamming environment. Also, the generated GNSS signal is compared to a commercial GPS L1 H/W based RF signal generator(STR4500). The results show that the designed GNSS signal generator in a normal environment compared to the same navigation performance. In jamming environment, it is shown that the body masking effect and GNSS signal acquisition and tracking loss in compliance with the jamming signal are precisely working in the reception environment of a vehicle.

A Case Study on the Impact of Ground-based Glaciogenic Seeding on Winter Orographic Clouds at Daegwallyeong (겨울철 대관령지역 지형성 구름에 대한 지상기반 구름씨뿌리기 영향 사례연구)

  • Yang, Ha-Young;Chae, Sanghee;Jeong, Jin-Yim;Seo, Seong-Kyu;Park, Young-San;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.301-314
    • /
    • 2015
  • The purpose of this study was to investigate the impact of ground-based glaciogenic seeding on orographic clouds in the Daegwallyeong area on 13 March, 2013. The experiments was conducted by releasing silver iodide (AgI) under following conditions: surface temperature below $-4^{\circ}C$, wind direction between 45 and $130^{\circ}$, and wind speed less than $5ms^{-1}$. Two seeding rates, $38gh^{-1}$ (SR1) and $113gh^{-1}$ (SR2), were tested to obtain an appropriate AgI ratio for snowfall enhancement in the Daegwallyeong area. Numerical simulations were carried out by using the WRF (Weather Research and Forecast) model with AgI point-source module which predicted dispersion fields of AgI particles. The results indicated that the target orographic clouds contained adequate amount of supercooled liquid water and that the dispersion of AgI particles tended to move along the prevailing wind direction. To validate the seeding effects, the observation data from FM-120 and MPS as well as PARSIVEL disdrometer were analyzed. In this case study, glaciogenic seeding significantly increased the concentration of small ice particles below 1 mm in diameter. The observation results suggest that SR1 seeding be reasonable to use the ground-based seeding in the Daegwallyeong area.