In this paper, we introduce the new general concept of usual expansiveness which is called "positively weak measure expansiveness" and study the basic properties of positively weak measure expansive C1-differentiable maps on a compact smooth manifold M. And we prove that the following theorems. (1) Let 𝓟𝓦𝓔 be the set of all positively weak measure expansive differentiable maps of M. Denote by int(𝓟𝓦𝓔) is a C1-interior of 𝓟𝓦𝓔. f ∈ int(𝓟𝓦𝓔) if and only if f is expanding. (2) For C1-generic f ∈ C1 (M), f is positively weak measure-expansive if and only if f is expanding.
For any given function f, we focus on the so-called prescribed mean curvature problem for the measure e-f(|x|2)dx provided thate-f(|x|2) ∈ L1(ℝn+1). More precisely, we prove that there exists a smooth hypersurface M whose metric is ds2 = dρ2 + ρ2d𝜉2 and whose mean curvature function is ${\frac{1}{n}}(\frac{u^p}{{\rho}^{\beta}})e^{f({\rho}^2)}{\psi}(\xi)$ for any given real constants p, β and functions f and ψ where u and ρ are the support function and radial function of M, respectively. Equivalently, we get the existence of a smooth solution to the following quasilinear equation on the unit sphere 𝕊n, $${\sum_{i,j}}({{\delta}_{ij}-{\frac{{\rho}_i{\rho}_j}{{\rho}^2+|{\nabla}{\rho}|^2}})(-{\rho}ji+{\frac{2}{{\rho}}}{\rho}j{\rho}i+{\rho}{\delta}_{ji})={\psi}{\frac{{\rho}^{2p+2-n-{\beta}}e^{f({\rho}^2)}}{({\rho}^2+|{\nabla}{\rho}|^2)^{\frac{p}{2}}}}$$ under some conditions. Our proof is based on the powerful method of continuity. In particular, if we take $f(t)={\frac{t}{2}}$, this may be prescribed mean curvature problem in Gauss measure space and it can be seen as an embedded result in Gauss measure space which will be needed in our forthcoming papers on the differential geometric analysis in Gauss measure space, such as Gauss-Bonnet-Chern theorem and its application on positive mass theorem and the Steiner-Weyl type formula, the Plateau problem and so on.
Kim, Eun-Ji;Kim, Dong-Kwan;Kim, Shin-Hye;Lee, Kyung-Moo;Park, Hyung-Seo;Kim, Se-Hoon
The Korean Journal of Physiology and Pharmacology
/
v.15
no.6
/
pp.431-436
/
2011
Vascular smooth muscle cells can obtain a proliferative function in environments such as atherosclerosis in vivo or primary culture in vitro. Proliferation of vascular smooth muscle cells is accompanied by changes in ryanodine receptors (RyRs). In several studies, the cytosolic $Ca^{2+}$ response to caffeine is decreased during smooth muscle cell culture. Although caffeine is commonly used to investigate RyR function because it is difficult to measure $Ca^{2+}$ release from the sarcoplasmic reticulum (SR) directly, caffeine has additional off-target effects, including blocking inositol trisphosphate receptors and store-operated $Ca^{2+}$ entry. Using freshly dissociated rat aortic smooth muscle cells (RASMCs) and cultured RASMCs, we sought to provide direct evidence for the operation of RyRs through the $Ca^{2+}$- induced $Ca^{2+}$ -release pathway by directly measuring $Ca^{2+}$ release from SR in permeabilized cells. An additional goal was to elucidate alterations of RyRs that occurred during culture. Perfusion of permeabilized, freshly dissociated RASMCs with $Ca^{2+}$ stimulated $Ca^{2+}$ release from the SR. Caffeine and ryanodine also induced $Ca^{2+}$ release from the SR in dissociated RASMCs. In contrast, ryanodine, caffeine and $Ca^{2+}$ failed to trigger $Ca^{2+}$ release in cultured RASMCs. These results are consistent with results obtained by immunocytochemistry, which showed that RyRs were expressed in dissociated RASMCs, but not in cultured RASMCs. This study is the first to demonstrate $Ca^{2+}$ release from the SR by cytosolic $Ca^{2+}$ elevation in vascular smooth muscle cells, and also supports previous studies on the alterations of RyRs in vascular smooth muscle cells associated with culture.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.86-88
/
2014
Naive Bayes (NB) assumption has some harmful effects in classification to the real world data. To relax this assumption, we now propose approach called Naive Bayes Mutual Information Attribute Weighting with Smooth Kernel Density Estimation (NBMIKDE) that combine the smooth kernel for attribute and attribute weighting method based on mutual information measure.
An important objective of pull-based production control is to achieve synchronized and smooth production flow in a multi-stage system that is subject to uncertainty. To our knowledge, previous research has not generated a performance measure that captures this objective of pull-based probased production control system. This performance material with respect to the instant when the operation is required. We examine the issue of asynchronous waste in a two-stage kanban control system.
In the control system $ \dot{x} = f(t,x(t)) + g(t,x(t))\dot{u}, x(0) = \bar{x}, t \in [0,T], $ this paper shows that the map from u with $L^1(m)$-topology to $x_u$ with $L^1(\mu)$-topology is Lipschitz continuous where f is $C^1$, $\mu$ is the Stieltjes measure derived from the function g which is not smooth in the variable t and $x_u$ is the solution of the above system corresponding to u under the assumption that $\dot{u}$ is bounded.
Let P be a probability measure on the real line with Lebesque-density f. The usual estimator of the distribution function (≡df) of P for the sample $\chi$$_1$,…, $\chi$$\_$n/ is the empirical df: F$\_$n/(t)=(equation omitted). But this estimator does not take into account the smoothness of F, that is, the existence of a density f. Therefore, one should expect that an estimator which is better adapted to this situation beats the empirical df with respect to a reasonable measure of performance.(omitted)
Let ${\gamma}$ : Ilongrightarrow R2 be a sufficiently smooth curve and $\sigma$${\gamma}$ be the affine arclength measure supported on ${\gamma}$. In this paper, we study the Lp - improving properties of the convolution operators T$\sigma$${\gamma}$ associated with $\sigma$${\gamma}$ for various curves ${\gamma}$. Optimal results are obtained for all finite type plane curves and homogeneous curves (possibly blowing up at the origin). As an attempt to extend this result to infinitely flat curves we give and example of a family of flat curves whose affine arclength measure has same Lp-improvement property. All of these results will be based on uniform estimates of damping oscillatory integrals.
In this paper we present a measurable version of the Smale's spectral decomposition theorem for homeomorphisms on compact metric spaces. More precisely, we prove that if a homeomorphism f on a compact metric space X is invariantly measure expanding on its chain recurrent set CR(f) and has the eventually shadowing property on CR(f), then f has the spectral decomposition. Moreover we show that f is invariantly measure expanding on X if and only if its restriction on CR(f) is invariantly measure expanding. Using this, we characterize the measure expanding diffeomorphisms on compact smooth manifolds via the notion of Ω-stability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.