• Title/Summary/Keyword: smart sensing

Search Result 609, Processing Time 0.028 seconds

LED Line Lamp System for Intelligent Road (지능형 도로 LED 라인조명 시스템)

  • Yang, Jin-Young;Kim, Won-Sik;Kim, Jin-Hee;Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.133-137
    • /
    • 2009
  • This paper presents the development of smart road line lamp system consisting light control device. It can perform the individual power control or partial on/off control of a LED lamp by control center and can detect the error of the LEDs by current sensing. Also, the ability to control the brightness and period of on/off by detecting the car's existence. This light control circuit consists of road line lamp unit device. It can give a lot of solutions when the server, which controls the whole system, is operated through CDMA(Code-Division Multiple Access) network.

  • PDF

Mutifunctional EMI Shielding and Sensing Applications based on Low-dimensional Nanomaterials (저차원 나노 소재 기반 다기능 전자파 차폐 및 센싱 응용기술)

  • Min, B.K.;Yi, Y.;Nguyen, V.T.;Mondal, S.;Choi, C.G.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.11-20
    • /
    • 2020
  • With the widespread use of high-performance electronics and mobile communications, electromagnetic interference (EMI) shielding has become crucial for protection against malfunctioning of electronic equipment and harmful effects to human health. In addition, smart sensor technologies will be rapidly developed in untact (non-contact) environments and personal healthcare fields. Herein, we introduce our recently developed technologies for flexible multifunctional EMI shielding, and highly sensitive wearable pressure-strain and humidity sensors realized using low-dimensional nanomaterials.

Strain Sensors Using Carbon Nanotube Composites (탄소나노튜브 복합 소재를 이용한 스트레인 센서)

  • Kang, In-Pil;Schulz Mark J.;Choi, Gyeong-Rak;Choi, Yeon-Sun;Lee, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.762-768
    • /
    • 2006
  • To address the need for new intelligent sensing of systems, this study presents a novel strain sensor based on piezoresistivity of carbon nanotube (CNT) and its nanocomposites. Fabrication and characterization of the carbon nanocomposite material are discussed and an electrical model of the CNT strain sensor was derived based on electrochemical impedance spectroscopy analysis and strain testing. The dynamic response of the sensor on a vibrating beam was simulated using numerical analysis and it was compared with experimental test. The simulation showed good agreement with the strain response of the actual sensor.

Experimental identification of rare-earth magnetic suspensions for micro and meso scale levitating systems

  • Siyambalapitiya, Chamila;De Pasquale, Giorgio;Soma, Aurelio
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.181-192
    • /
    • 2012
  • Magnetic suspensions based on passive levitation of diamagnetic materials on permanent magnets provide attractive systems for several applications on the micro and meso scales. The magnetic properties of these kinds of suspensions dramatically reduce the global mechanical stiffness of the devices providing significant effects on their dynamic response. The goal of this paper is to investigate the static and dynamic behavior of magnetic suspensions with respect to its dependant parameters. Experimental measurements have been performed on the response of dedicated prototypes where the geometrical dimensions and magnetic field strength have been intended as variable parameters. Some benefits have been documented in the fields of energy harvesting and inertial sensing, while additional applications of magnetic suspensions are under investigation.

Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers

  • Lee, J.R.;Park, C.Y.;Kong, C.W.
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2013
  • We developed a simultaneous strain measurement and damage detection technique using a pair of surface-mounted piezoelectric transducers and a fiber connecting them. This is a novel sensor configuration of the fiber acoustic wave (FAW) piezoelectric transducer. In this study, lead-zirconate-titanate (PZT) transducers are installed conventionally on a plate's surface, which is a technique used in many structural health monitoring studies. However, our PZTs are also connected with an optical fiber. A FAW and Lamb wave are simultaneously guided in the optical fiber and the structure, respectively. The dependency of the time-of-flight of the FAW on the applied strain is quantified for strain sensing. In our experimental results, the FAW exhibited excellent linear behavior and no hysteresis with respect to the change in strain. On the other hand, the well-known damage detection function of the surface-mounted PZT transducers was still available by monitoring the waveform change in the conventional Lamb wave ultrasonic path.

Design and Implementation of Vehicle Internal Alarm System using Raspberry-pie Multi-sensor

  • Choi, MyeongBok;Park, SungKon
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.112-118
    • /
    • 2018
  • This paper describes the design and implementation of a vehicle internal alarm system using raspberry-pie and gas sensor. It provides a notification system for sleepiness during driving, a driving time notification system and a smoking detection system. We coded using 'Python'. And we use 'MySQL' and 'PHP' to build the necessary servers and web pages for gathering sensing data and monitoring. The developed system was tested by several methods. All experiments showed satisfactory response signals and detected with immediate responses.

An Improvement of Optical Fiber Composite Power Cable On-Line Monitoring System for Underground Distribution Network (지중 배전계통 적용을 위한 광복합 케이블 실시간 감시시스템 개선)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Park, Jung-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.77-83
    • /
    • 2012
  • Since power system is switching to smart grid, on-line monitoring technology has become necessary for underground distribution power cable. Therefore, the application of DTS(Distributed Temperature Sensing) technology using OFCPC(Optical Fiber Composite Power Cable) capable of monitoring underground distribution power cables has been developed. These can bring about reductions in faults and increases in operating capacity of underground distribution system. To date, the test-bed of optical fiber composite power cable on-line monitoring system has been constructed. Then, matters to be improved have been drawn through verification experiments. This paper presents the improvement and experiment results of the optical fiber composite power cable on-line monitoring system to apply to underground distribution lines in the field.

Strain Sensors Using Carbon Nanotube Composites (탄소나노튜브 복합 소재를 이용한 스트레인 센서)

  • Kang, In-Pil;Schulz, Mark J.;Lee, Jong-Won;Choi, Gyeong-Rak;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.930-935
    • /
    • 2006
  • To address the need for new intelligent sensing of systems, this study presents a novel strain sensor based on peizoresistivity of carbon nanotube (CNT) and its nanocomposites. Fabrication and characterization of the carbon nanocomposite material are discussed and an electrical model of the CNT strain sensor was derived based on electrochemical impedance spectroscopy analysis and strain testing. The dynamic response of the sensor on a vibrating beam was simulated using numerical analysis and it was compared with experimental test. The simulation showed good agreement with the strain response of the actual sensor.

  • PDF

Application of Brillouin Scattering Sensor for Broader Area Slope Movement (광 산란파를 이용한 광역 사면 거동 예측)

  • 장기태;이쌍덕;유병선;김경태;정성윤;이원효
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.223-232
    • /
    • 2000
  • Optical fibre sensors have shown a potential to serve real time health monitoring of the structures. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory and field tests using a novel optical sensor based on Brillouin scattering. One of the advantages of this technique is that the bare fibre itself acts as sensing element without any special fibre processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Civil Engineering Smart Structures.

  • PDF

Design rules for creating sensing and self-actuating microcapsules

  • Kolmakov, German V.;Yashin, Victor V.;Balazs, Anna C.
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.199-211
    • /
    • 2011
  • Using computational modeling, we design a pair of biomimetic microcapsules that exploit chemical mechanisms to communicate and alter their local environment. As a result, these synthetic objects can undergo autonomous, directed motion. In the simulations, signaling microcapsules release "agonist" particles, while target microcapsules release "antagonist" particles and the permeabilities of both capsule types depend on the local particle concentration in the surrounding solution. Additionally, the released nanoscopic particles can bind to the underlying substrate and thereby create adhesion gradients that propel the microcapsules to move. Hydrodynamic interactions and the feedback mechanism provided by the dissolved particles are both necessary to achieve the cooperative behavior exhibited by these microcapsules. Our model provides a platform for integrating both the spatial and temporal behavior of assemblies of "artificial cells", and allows us to design a rich variety of structures capable of exhibiting complex dynamics. Due to the cell-like attributes of polymeric microcapsules and polymersomes, material systems are available for realizing our predictions.