• Title/Summary/Keyword: smart mining

Search Result 261, Processing Time 0.024 seconds

Topic modeling and topic change trend analysis for advanced construction technologies (건설신기술에 대한 토픽 모델링 및 토픽 변화추이 분석)

  • Jeong, Seong Yun;Kim, Nam Gon
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.102-110
    • /
    • 2021
  • Currently, the advanced construction technology endorsement system is being operated to promote the development of domestic construction technology. We tried to examine the implicit meanings inherent in advanced construction technologies by analyzing the relationship between emerging vocabularies with high importance in relation to the advanced construction technologies endorsed through this system. For this purpose, 918 cases of advanced construction technology information were collected. Based on the endorsed year and summary of the advanced construction technologies, the importance of the emerging vocabularies was measured for each advanced construction technology. And, based on the LDA model, the degree of influence between related vocabularies was evaluated for each of the four topic areas. Topics according to the technical application fields were analyzed. From 1990 to 2021, the trend of changes in highly influential vocabularies by each topic was inferred. In the future, changes in the degree of influence of the topics of environment, machinery, facilities, and maintenance and reinforcement of structures and related technology fields were predicted.

An Analysis of National R&D Trends in the Metaverse Field using Topic Modeling (토픽 모델링을 활용한 메타버스 분야 국가 R&D 동향 분석)

  • Lee, Jungwoo;Lee, Soyeon
    • Smart Media Journal
    • /
    • v.11 no.8
    • /
    • pp.9-20
    • /
    • 2022
  • With the rise of the metaverse industry worldwide, relevant national strategies and nurturing systems have been prepared in Korea. As the complexity of policies increases, the importance of establishing data-based policymkaing is growing, and studies diagnosing national R&D trends in the metaverse field are still lacking. Therefore, this paper collected NTIS national R&D information for 9,651 R&D projects promoted from 2002 to 2020. And this study looked at the current status and identified major topics based on the topic modeling, and considered time-series changes in the topics. Eleven major topics of R&D tasks in the metaverse field were derived, hot topics were service/content/platform development and medical/surgical fields of application fields, and cold topics were urban/environment/spatial information fields. Strategic R&D Management, metaverse-related laws, and institutional studies were proposed as policy directions.

A study of changes in user experience and service evaluation - Topic modeling of Netflix app reviews (사용자 경험과 서비스 평가의 변화에 관한 연구 - 넷플릭스 앱 리뷰 토픽 모델링을 통해)

  • Seon Yeong Yu;Mi Jin Noh;Yang Sok Kim;Mu Moung Cho Han
    • Smart Media Journal
    • /
    • v.12 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • As Netflix usage has increased due to the COVID-19 pandemic, users' experiences with the service have also increased. Therefore, this study aims to conduct topic modeling analysis based on Netflix review data to explore the changes in Netflix user experience and service before and after the COVID-19 pandemic. We collected Netflix app review data from the Google Play Store using the Google Play Scraper library, and used topic modeling to examine keyword differences between app reviews before and after the pandemic. The analysis revealed four main topics: Netflix app features, Netflix content, Netflix service usage, and Netflix overall reviews. After the pandemic, when user experience increased, users tended to use more diverse and detailed keywords in their reviews. By using Netflix review data to analyze users' opinions, this study shows the changes in user experience of Netflix services before and after the pandemic, which can be used as a guide to strengthen competitiveness in the competitive OTT market.

Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case (KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템)

  • Choi, Jaewon;Sohn, Bongjin;Lim, Hyuna
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.1-23
    • /
    • 2019
  • Big data refers to data that is difficult to store, manage, and analyze by existing software. As the lifestyle changes of consumers increase the size and types of needs that consumers desire, they are investing a lot of time and money to understand the needs of consumers. Companies in various industries utilize Big Data to improve their products and services to meet their needs, analyze unstructured data, and respond to real-time responses to products and services. The financial industry operates a decision support system that uses financial data to develop financial products and manage customer risks. The use of big data by financial institutions can effectively create added value of the value chain, and it is possible to develop a more advanced customer relationship management strategy. Financial institutions can utilize the purchase data and unstructured data generated by the credit card, and it becomes possible to confirm and satisfy the customer's desire. CRM has a granular process that can be measured in real time as it grows with information knowledge systems. With the development of information service and CRM, the platform has change and it has become possible to meet consumer needs in various environments. Recently, as the needs of consumers have diversified, more companies are providing systematic marketing services using data mining and advanced CRM (Customer Relationship Management) techniques. KB Kookmin Card, which started as a credit card business in 1980, introduced early stabilization of processes and computer systems, and actively participated in introducing new technologies and systems. In 2011, the bank and credit card companies separated, leading the 'Hye-dam Card' and 'One Card' markets, which were deviated from the existing concept. In 2017, the total use of domestic credit cards and check cards grew by 5.6% year-on-year to 886 trillion won. In 2018, we received a long-term rating of AA + as a result of our credit card evaluation. We confirmed that our credit rating was at the top of the list through effective marketing strategies and services. At present, Kookmin Card emphasizes strategies to meet the individual needs of customers and to maximize the lifetime value of consumers by utilizing payment data of customers. KB Kookmin Card combines internal and external big data and conducts marketing in real time or builds a system for monitoring. KB Kookmin Card has built a marketing system that detects realtime behavior using big data such as visiting the homepage and purchasing history by using the customer card information. It is designed to enable customers to capture action events in real time and execute marketing by utilizing the stores, locations, amounts, usage pattern, etc. of the card transactions. We have created more than 280 different scenarios based on the customer's life cycle and are conducting marketing plans to accommodate various customer groups in real time. We operate a smart offering system, which is a highly efficient marketing management system that detects customers' card usage, customer behavior, and location information in real time, and provides further refinement services by combining with various apps. This study aims to identify the traditional CRM to the current CRM strategy through the process of changing the CRM strategy. Finally, I will confirm the current CRM strategy through KB Kookmin card's big data utilization strategy and marketing activities and propose a marketing plan for KB Kookmin card's future CRM strategy. KB Kookmin Card should invest in securing ICT technology and human resources, which are becoming more sophisticated for the success and continuous growth of smart offering system. It is necessary to establish a strategy for securing profit from a long-term perspective and systematically proceed. Especially, in the current situation where privacy violation and personal information leakage issues are being addressed, efforts should be made to induce customers' recognition of marketing using customer information and to form corporate image emphasizing security.

Identifying the Interests of Web Category Visitors Using Topic Analysis (토픽 분석을 활용한 웹 카테고리별 방문자 관심 이슈 식별 방안)

  • Choi, Seongi;Kim, Namgyu
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.4_spc
    • /
    • pp.415-429
    • /
    • 2014
  • With the advent of smart devices, users are able to connect to each other through the Internet without the constraints of time and space. Because the Internet has become increasingly important to users in their everyday lives, reliance on it has grown. As a result, the number of web sites constantly increases and the competition between these sites becomes more intense. Even those sites that operate successfully struggle to establish new strategies for customer retention and customer development in order to survive. Many companies use various customer information in order to establish marketing strategies based on customer group segmentation A method commonly used to determine the customer groups of individual sites is to infer customer characteristics based on the customers' demographic information. However, such information cannot sufficiently represent the real characteristics of customers. For example, users who have similar demographic characteristics could nonetheless have different interests and, therefore, different buying needs. Hence, in this study, customers' interests are first identified through an analysis of their Internet news inquiry records. This information is then integrated in order to identify each web category. The study then analyzes the possibilities for the practical use of the proposed methodology through its application to actual Internet news inquiry records and web site browsing histories.

A Study on analysis framework development for yield improvement in discrete manufacturing (이산 제조 공정에서의 수율 향상을 위한 분석 프레임워크의 개발에 관한 연구)

  • Song, Chi-Wook;Roh, Geum-Jong;Park, Dong-Jin
    • The Journal of Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-121
    • /
    • 2017
  • Purpose It is a major goal to improve the product yields during production operations in the manufacturing industry. Therefore, factory is trying to keep the good quality materials and proper production resources, also find the proper condition of facilities and manufacturing environment for yields improvement. Design/methodology/approach We propose the hybrid framework to analyze to dataset extracted from MES. Those data is about the alarm information generated from equipment, both measurement and equipment process value from production and cycle/pitch time measured from production data these covered products during production. We adapt a data warehousing techniques for organizing dataset, a logistic regression for finding out the significant factors, and a association analysis for drawing the rules which affect the product yields. And then we validate the framework by applying the real data generated from the discrete process in secondary cell battery manufacturing. Findings This paper deals with challenges to apply the full potential of modeling and simulation within CPPS(Cyber-Physical Production System) and Smart Factory implementation. The framework is being applied in one of the most advanced and complex industrial sectors like semiconductor, display, and automotive industry.

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

Design and Implementation of Marketing Advisement System through the Concern Degree Analysis of Customers Based on Twitter (트위터 기반 고객의 관심도 분석을 통한 마케팅 조언 시스템의 설계 및 구현)

  • Lee, Ki-Young;Kim, Hye-Young;Kim, Aluem;Kim, Sung-Bae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.185-190
    • /
    • 2014
  • With the fast increment of smart phone users and extension of wireless internet the number of SNS user is also increasing. Twitter among lots of SNS takes the lead in SNS market. Twiter users express their thinking and feelings. In this paper, by analyzing twitts near the distribution enterprise using opinion mining. And by analyzing concern degree using the number of twitts and positive, neutral, negative degree we deliver marketing message to marketer. As the result, we propose that marketing and management of this distribution enterprise can reflect the demand of customer who is near there.

Experimental Evaluation of Distance-based and Probability-based Clustering

  • Kwon, Na Yeon;Kim, Jang Il;Dollein, Richard;Seo, Weon Joon;Jung, Yong Gyu
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • Decision-making is to extract information that can be executed in the future, it refers to the process of discovering a new data model that is induced in the data. In other words, it is to find out the information to peel off to find the vein to catch the relationship between the hidden patterns in data. The information found here, is a process of finding the relationship between the useful patterns by applying modeling techniques and sophisticated statistical analysis of the data. It is called data mining which is a key technology for marketing database. Therefore, research for cluster analysis of the current is performed actively, which is capable of extracting information on the basis of the large data set without a clear criterion. The EM and K-means methods are used a lot in particular, how the result values of evaluating are come out in experiments, which are depending on the size of the data by the type of distance-based and probability-based data analysis.

A Study on Efficient Learning Units for Behavior-Recognition of People in Video (비디오에서 동체의 행위인지를 위한 효율적 학습 단위에 관한 연구)

  • Kwon, Ick-Hwan;Hadjer, Boubenna;Lee, Dohoon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.196-204
    • /
    • 2017
  • Behavior of intelligent video surveillance system is recognized by analyzing the pattern of the object of interest by using the frame information of video inputted from the camera and analyzes the behavior. Detection of object's certain behaviors in the crowd has become a critical problem because in the event of terror strikes. Recognition of object's certain behaviors is an important but difficult problem in the area of computer vision. As the realization of big data utilizing machine learning, data mining techniques, the amount of video through the CCTV, Smart-phone and Drone's video has increased dramatically. In this paper, we propose a multiple-sliding window method to recognize the cumulative change as one piece in order to improve the accuracy of the recognition. The experimental results demonstrated the method was robust and efficient learning units in the classification of certain behaviors.