• Title/Summary/Keyword: smart meter

Search Result 165, Processing Time 0.031 seconds

Prediction of water demand using deep learning and smart water meter (스마트 수도미터와 딥러닝을 활용한 수용가별 물 사용량 예측)

  • Kim, Jongsung;Song, Jaehyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.394-394
    • /
    • 2022
  • 최근 스마트 수도미터의 보급을 통해 수용가구별 물 사용 자료를 수집할 수 있다. 이런 수용가구별 물 사용 패턴은 주말, 날씨 등 다양한 요인으로 인해 비선형적 특성을 가지고 있다. 그로인해 전통적인 시계열 예측 모형인 ARIMA 모형으로 적용하기 어렵다. 따라서 본 연구에서는 딥러닝 기반의 LSTM 모형을 통해 수용가구별 물 소비량 예측 모형을 개발하였다. 이 모형은 비선형적인 물 소비 패턴을 학습하기 위해 다양한 변수를 고려하였다. 서로 다른 종류의 4개 type (A : 단독주택, B: 아파트, C: 음식점, D : 초등학교)의 수용가구에 대한 ARIMA 모형과 LSTM 모형을 개발하였고, 학습에 사용되지 않은 새로운 데이터를 적용하여 정량적으로 예측성능을 비교했다. 그 결과, 모든 수용가구에서 LSTM 모형이 ARIMA 모형보다 성능이 우수하였다 (상관계수 : 평균89% | RMSE : 평균 5.60m3). 따라서 본 연구에서 제안한 모형은 수용가구별 물 사용량을 예측하는데 높은 활용도를 보일 것으로 기대된다.

  • PDF

Study on Development Method of MDMS for AMI Operation based on Common Information Model (CIM 기반 AMI용 미터데이터관리시스템(MDMS) 개발 방안 연구)

  • Jung, Nam-Joon;Jin, Young-Taek;Chae, Chang-Hun;Choi, Min-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.171-180
    • /
    • 2012
  • In the development of MDMS(Meter Data Management System) based on CIM(Common Information Model), which is international standard in information model and data exchange on power system, the two focused issues are the effective management of data collected in a shorter time period and the way to integrate services supporting legacy system to use the AMI(AMI, Advanced Metering Infrastructure) data. In this paper, we propose MDMS implementation methods and functions in AMI environment which are differ from existing AMR system environments in that the methods support bi-directional service infrastructure. The proposed MDMS in this paper has two unique features, one is the secure of interoperability by utilizing the CIM and ESB, the other is the improvement of field application by implementing system module based on components. On an implementation of smart grid, the result of proposed methods is expected to contribute to the efficient development and operation of CIM-based power system.

A Study On IoT Data Consistency in IoT Environment (사물인터넷 환경에서 IoT 데이터 정합성 연구)

  • Choi, Changwon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.127-132
    • /
    • 2022
  • As the IoT technology is more developed, it is more important for the accuracy of IoT data. Since the IoT data supports a different formats and protocols, it is often happened that the IoT system is failed or the incorrect data is generated with the unreliable IoT devices(sensor, actuator). Because the abnormality of IoT device or the user situation is not detected correctly, this problem makes the user to be unsatisfied with the IoT system. This study proposes the decision methodology of IoT data consistency whether the IoT data is generated in normal range or not by using the mathematical functions('gradient descent function' and 'linear regression function'). It may be concluded that the gradient function method is suitable for the IoT data which the 'increasing velocity' is related with the next generated pattern(eg. sensor devices), the linear regression function method is suitable for the IoT data which the 'the difference from linear regression function' is related with the next generated pattern in case the data has a linear pattern(eg. water meter, electric meter).

Design and Implement of Power-Data Processing System with Optimal Sharding Method in Ethereum Blockchain Environments

  • Lee, Taeyoung;Park, Jaehyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.143-150
    • /
    • 2021
  • In the recent power industry, a change is taking place from manual meter reading to remote meter reading using AMI(Advanced Metering Infrastructure). If such the power data generated from the AMI is recorded on the blockchain, integrity is guaranteed by preventing forgery and tampering. As data sharing becomes transparent, new business can be created. However, Ethereum blockchain is not suitable for processing large amounts of transactions due to the limitation of processing speed. As a solution to overcome such the limitation, various On/Off-Chain methods are being investigated. In this paper, we propose a interface server using data sharding as a solution for storing large amounts of power data in Etherium blockchain environments. Experimental results show that our power-data processing system with sharding method lessen the data omission rate to 0% that occurs when the transactions are transmitted to Ethereum and enhance the processing speed approximately 9 times.

Comparison of Detergency and Fabric Deformation between Ultrasonic and Home Laundry (초음파 세탁과 가정 세탁의 세척성과 직물변형 비교)

  • Nawon Hwang;Hae-won Chung;Kwang-Woo Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.3
    • /
    • pp.386-397
    • /
    • 2023
  • In this study, the efficacy of ultrasonic washing in cotton and wool fabrics was compared and evaluated against conventional washing in terms of cleaning properties and fabric deformation. Factors such as washing temperature, time, liquid ratio, and detergent concentration were kept varied, and the cleaning properties of sebum-soiled fabrics were assessed using different detergents such as alcohol ethoxylate, linear alkylbenzenesulfonate, and IEC 60456 Reference Detergent A*. In addition, the effects and emulsification power of enzymes and oxygen bleach were examined. To compare the cleaning properties with general washing, a launder-O-meter was used. To investigate fabric deformation during the washing process, the loosening test cloth, shrinkage test cloth, and mechanical strength test cloth were compared between ultrasonic washing machines and household drum washing machines. The results indicate that ultrasonic washing exhibits superior cleaning properties than launder-O-meter when the temperature is low and the washing time is short. Furthermore, there is less deformation and damage during the washing process. It was also observed that the activity of the detergent increases when ultrasonic waves are applied to the washing process. Considering the increasing tendency to pursue convenience and simplicity in clothing management as well as the anticipated commercialization of smart clothing with built-in electric circuits, ultrasonic laundry could serve as a new alternative to existing laundry methods.

A Design of an AMI System Based on an Extended Home Network for the Smart Grid (스마트 그리드를 위한 확장 홈 네트워크 기반의 AMI 시스템 설계)

  • Hwang, Yu-Jin;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.56-64
    • /
    • 2012
  • A smart grid is the next generation power grid which combines the existing power grid with information technology, so an energy efficient power grid can be provided. In this paper, in order to build an efficient smart grid an AMI system, which gears with the existing home network and provides an user friendly management function, is proposed. The proposed AMI system, which is based on an extended home network, consists of various functional units; smart meters, communication modules, home gateway, security modules, meter data management modules (MDMM), electric power application modules and so on. The proposed home network system, which can reduce electric power consumption and transmit data more effectively, is designed by using IEEE 802.15.4. The extended home gateway can exchange energy consumption information with the outside management system via web services. The proposed AMI system is designed to enable two-way communication between the home gateway and MDMM via the Internet. The AES(Advanced Encryption Standard) algorithm, which is a symmetric block cipher algorithm, is used to ensure secure information exchange. Even though the results in this study could be limited to our experimental environment, the result of the simulation test shows that the proposed system reduces electric power consumption by 4~42% on average compared to the case of using no control.

433 MHz Radio Frequency and 2G based Smart Irrigation Monitoring System (433 MHz 무선주파수와 2G 통신 기반의 스마트 관개 모니터링 시스템)

  • Manongi, Frank Andrew;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2020
  • Agriculture is the backbone of the economy of most developing countries. In these countries, agriculture or farming is mostly done manually with little integration of machinery, intelligent systems and data monitoring. Irrigation is an essential process that directly influences crop production. The fluctuating amount of rainfall per year has led to the adoption of irrigation systems in most farms. The absence of smart sensors, monitoring methods and control, has led to low harvests and draining water sources. In this research paper, we introduce a 433 MHz Radio Frequency and 2G based Smart Irrigation Meter System and a water prepayment system for rural areas of Tanzania with no reliable internet coverage. Specifically, Ngurudoto area in Arusha region where it will be used as a case study for data collection. The proposed system is hybrid, comprising of both weather data (evapotranspiration) and soil moisture data. The architecture of the system has on-site weather measurement controllers, soil moisture sensors buried on the ground, water flow sensors, a solenoid valve, and a prepayment system. To achieve high precision in linear and nonlinear regression and to improve classification and prediction, this work cascades a Dynamic Regression Algorithm and Naïve Bayes algorithm.

USN-based Water Treatment Plant Facilities Data Management Techniques and Reliability (USN 기반 수직형 정수처리시설 데이터 최적관리 및 신뢰성 검증연구)

  • Jang, Sang-Bok;Shin, Gang-Wook;Hong, Sung-Taek;Lee, An-Kyu;Park, Hye-Mi;Chun, Myung-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2736-2744
    • /
    • 2013
  • In this paper, we present a Smart Water Treatment Plant using Zigbee USN devices and a real-time monitoring system in K-water Flow Meter Calibration Center Building. For verification, the data of vertical type WTP such as flow rate, pressure, water level and water temperature are obtained by the Zigbee USN devices, operating in 2.45 GHz band, and be wirelessly surveilled by the real-time monitoring system. The received data from the sensor is transmitted to the data processing device, and then the processed data can be monitored on a smart phone. Consequently, the pilot plant based on the low-cost and high-efficiency USN has been developed with the performance analysis for the communication network and remote monitoring system on mobile devices.

Implementation of e-Meters System Middleware base on RFID/USN (RFID/USN기반 e-Meters 시스템의 미들웨어 구현)

  • Jun, Won-Goo;Lee, Myung-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.729-734
    • /
    • 2011
  • In this paper, e-Meters middleware and applications using standardized middleware in the EPCglobal is suggested. An standardized middleware of the EPCglobal is designed to manage as a form of SCM and other logistics. In order to support a variety of services using RFID-based, the system must be able to support each protocol. The main features of e-Meters middleware is consist of information status and delivery, distributed database processing, event data analysis, and handling. To operate real time e-Meters system information, The realized middleware is configured to process the results of data collection.

Implementation of a Residual Quantity Monitoring System in a Liquefied Gas Storage Tank based on Wireless Sensor Network Technology (무선센서 네트워크 기술 기반 액화가스 저장탱크 내 잔량 모니터링 시스템 구현)

  • Kim, Min-Kyu;Han, Hae-Jin;Han, Jaehwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.352-356
    • /
    • 2018
  • This paper relates to a technology for monitoring a liquefied gas storage tank in the special gas field where demand is increasing owing to the continuous growth of related fields such as the semiconductor, display, and ICT convergence electronics industries. We have proposed a system for real - time monitoring using wireless sensor network technology, and implemented a system consisting of a sensor unit, transmitter module, and receiver module to be attached to a liquefied gas storage tank. The system was applied to LCO2 tanks among various liquefied gas storage tanks to verify the feasibility. The storage tanks employed in the experiments has capacities of 16,179 l and was 1,920 mm in inner diameter. Furthermore, the density was 1.03 g/l. The measured data were compared with reference data on the remaining gas level versus the $CO_2$ height of the surface, expressed using a conventional water meter, provided by an existing storage tank supplier. The experimental results show that the data is similar to the standard data provided by the tank supplier, and has a high accuracy and reliability within an error range of 0.03%.