• Title/Summary/Keyword: smart convergence

Search Result 3,574, Processing Time 0.033 seconds

A novel adaptive unscented Kalman Filter with forgetting factor for the identification of the time-variant structural parameters

  • Yanzhe Zhang ;Yong Ding ;Jianqing Bu;Lina Guo
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.9-21
    • /
    • 2023
  • The parameters of civil engineering structures have time-variant characteristics during their service. When extremely large external excitations, such as earthquake excitation to buildings or overweight vehicles to bridges, apply to structures, sudden or gradual damage may be caused. It is crucially necessary to detect the occurrence time and severity of the damage. The unscented Kalman filter (UKF), as one efficient estimator, is usually used to conduct the recursive identification of parameters. However, the conventional UKF algorithm has a weak tracking ability for time-variant structural parameters. To improve the identification ability of time-variant parameters, an adaptive UKF with forgetting factor (AUKF-FF) algorithm, in which the state covariance, innovation covariance and cross covariance are updated simultaneously with the help of the forgetting factor, is proposed. To verify the effectiveness of the method, this paper conducted two case studies as follows: the identification of time-variant parameters of a simply supported bridge when the vehicle passing, and the model updating of a six-story concrete frame structure with field test during the Yangbi earthquake excitation in Yunnan Province, China. The comparison results of the numerical studies show that the proposed method is superior to the conventional UKF algorithm for the time-variant parameter identification in convergence speed, accuracy and adaptability to the sampling frequency. The field test studies demonstrate that the proposed method can provide suggestions for solving practical problems.

A Development Direction for Scientific Guard Systems Applying 3 Elements of Revolution in Military Affairs (군사혁신 3요소를 적용한 과학화 경계시스템 발전방향)

  • Young-ho Kwon;June-Seung Yoo;Sung-Jun Park;Hyun-Kyu Choi;Sang-Keun Cho;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.249-255
    • /
    • 2023
  • In this study, based on the awareness of the problem of current scientific guard systems of ROKA, We suggested a develoment direction for scientific guard system applying 3 elements of Revolution in Military Affairs by 2035. To this end, we analyzed challenges of current scientific guard systems and reviewed similar cases in other countries. Based on this, We suggested a develoment direction for scientific guard system, comprised of the concept of gurad operation, the organization of guard troops, and MUM-T(manned and unmanned teaming) by applying the framework of 3 elements of military innovation (operation concept, organization, weapon system). In order to overcome challenges at hand, we need a innovative scientific guard systems that applies MUM-T based on high technology along with agile&smart guard troops.

The influence of sea surface temperature for vertical extreme wind shear change and its relation to the atmospheric stability at coastal area

  • Geonhwa Ryu;Young-Gon Kim;Dongjin Kim;Sang-Man Kim;Min Je Kim;Wonbae Jeon;Chae-Joo Moon
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • In this study, the effect of sea surface temperature (SST) on the distribution of vertical wind speed in the atmospheric boundary layer of coastal areas was analyzed. In general, coastal areas are known to be more susceptible to various meteorological factors than inland areas due to interannual changes in sea surface temperature. Therefore, the purpose of this study is to analyze the relationship between sea surface temperature (ERA5) and wind resource data based on the meteorological mast of Høvsøre, the test bed area of the onshore wind farm in the coastal area of Denmark. In addition, the possibility of coastal disasters caused by abnormal vertical wind shear due to changes in sea surface temperature was also analyzed. According to the analysis of the correlation between the wind resource data at met mast and the sea surface temperature by ERA5, the wind speed from the sea and the vertical wind shear are stronger than from the inland, and are vulnerable to seasonal sea surface temperature fluctuations. In particular, the abnormal vertical wind shear, in which only the lower wind speed was strengthened and appeared in the form of a nose, mainly appeared in winter when the atmosphere was near-neutral or stable, and all occurred when the wind blows from the sea. This phenomenon usually occurred when there was a sudden change in sea surface temperature within a short period of time.

Inundation Analysis of Agricultural Basin Considering Agricultural Drainage Hydrological Plan and Critical Rainfall Duration (농지배수 수문설계 기준과 임계지속기간을 고려한 농업 소유역 침수분석)

  • Kim, Kwihoon;Jun, Sang-Min;Kang, Moon Seong;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.25-32
    • /
    • 2023
  • KDS (Korean Design Standard) for agricultural drainage is a planning standard that helps determine the appropriate capacity and type of drainage facilities. The objective of this study was to analyze the inundation of the agricultural basin considering the current design standard and the critical rainfall duration. This study used the rainfall durations of 1-48 hour, and the time distribution method with the Chicago and the modified Huff model. For the runoff model, the NRCS (Natural Resources Conservation Service) unit hydrograph method was applied, and the inundation depth and duration were analyzed using area-elevation data. From the inundation analysis using the modified Huff method with different rainfall durations, 4 hours showed the largest peak discharge, and 11 hours showed the largest inundation depth. From the comparison analysis with the current method (Chicago method with a duration of 48 hours) and the modified Huff method applying critical rainfall duration, the current method showed less peak discharge and lower inundation depth compared to the modified Huff method. From the simulation of changing values of drainage rate, the duration of 11 hours showed larger inundation depth and duration compared to the duration of 4 hours. Accordingly, the modified Huff method with the critical rainfall duration would likely be a safer design than the current method. Also, a process of choosing a design hydrograph considering the inundation depth and duration is needed to apply the critical rainfall duration. This study is expected to be helpful for the theoretical basis of the agricultural drainage design standards.

Analysis of Presence and Immersion Elements of VR Game (VR게임의 실재감과 몰입감 요소 분석)

  • Kim, Tae-Gyu;Jang, Woo-Seok
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.69-76
    • /
    • 2019
  • Backed by the fourth industrial revolution as the background of the research, VR, AR and MR have increased interest and wireless Oculus Quest is releasing, creating hardware recall and continuing virtual reality devices, and game software develop or service VR games using such devices. As a result, it is expected that VR game markets will continue to grow in the future. For this purpose, we understand the technical factors of presence and immersion that appear in virtual reality games and should be able to apply them when we produce VR games. Through the process, we analyzed elements of VR game concept, immersion, and presence and analyzed three games that were commercialized. As a suggestion, we need to take into account presence and immersion characteristics when developing and experiencing virtual reality games in the future.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

Exploring Enhancements of Data Industry Competitiveness in the Agricultural Sector (농업 부문 데이터 산업 경쟁력 제고 방안)

  • Choi, Ha-Yeon;Im, Ye-Rin;Kang, Seung-Yong;Kang, Seung-Yong;Yoo, Do-il
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.137-152
    • /
    • 2023
  • Data is indispensable for digital transformation of agriculture with the development of innovative information and communication technology (ICT). In order to devise and prioritize strategies for enhancing data competitiveness in the agricultural sector, we employed an Analytic Hierarchy Process (AHP) analysis. Drawing from existing research on data competitiveness indicators, we developed a three-tier decision-making structure reflecting unique characteristics of the agricultural sector such as farmers'awareness of the data industry or awareness of agriculture among data workers. AHP survey was administered to experts from both agricultural and non-agricultural sectors with a high understanding of data. The overall composite importance, derived from the respondents, was rated in the following order: 'Employment Support', 'Data Standardization', 'R&D Support', 'Start-up Ecosystem Support', 'Relaxation of Regulations', 'Legislation', and 'Data Analytics and Utilization Technology'. In the case of experts in the agricultural sector, 'Employment Support' was ranked as the top priorities, and 'Legislation', 'Undergrad and Grad Education', and 'In-house Training' were also regarded as highly important. On the other hand, experts in the non-agricultural sector perceived 'Data Standardization' and 'Relaxation of Regulations' as the top two priorities, and 'Data Center' and 'Open Public Data' were also highly rated.

The Mediating Effect of Subjective Happiness in the Relationship between Parental Abuse and Neglect and Internet Addiction in Adolescents (부모로부터의 학대 및 방임과 청소년의 인터넷 과의존의 관계에서 주관적 행복감의 매개효과)

  • Choi Jihyun;Jeong Misook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.471-478
    • /
    • 2023
  • The purpose of this study is to examine the effects of parental abuse and neglect on adolescents' internet addiction, and to verify the mediating effect of subjective happiness in the relationship between parental abuse and neglects and adolescent internet addiction. To this end, dat from the 16th year of the 2021 Korea Welfare Panel(KWPS) conducted by the Korea Institute for Health and Social Affairs were used. In this study, 1st, 2nd and 3rd graders of high school were analyzed, and data from a total of 325 students were analyzed. The analysis utilized SPSS 27.0 and Hayes(2013)'s Macro Process(model 4) to verity correlation analysis and mediating effects between related variables. The results of the analysis are as follows: First, abuse and neglect from parents directly affect adolescents' Internet addiction. Second, it was analyzed that subjective happiness mediated the effect of parental abuse and neglect on adolescents' Internet addiction.

A Study on Unstructured text data Post-processing Methodology using Stopword Thesaurus (불용어 시소러스를 이용한 비정형 텍스트 데이터 후처리 방법론에 관한 연구)

  • Won-Jo Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.935-940
    • /
    • 2023
  • Most text data collected through web scraping for artificial intelligence and big data analysis is generally large and unstructured, so a purification process is required for big data analysis. The process becomes structured data that can be analyzed through a heuristic pre-processing refining step and a post-processing machine refining step. Therefore, in this study, in the post-processing machine refining process, the Korean dictionary and the stopword dictionary are used to extract vocabularies for frequency analysis for word cloud analysis. In this process, "user-defined stopwords" are used to efficiently remove stopwords that were not removed. We propose a methodology for applying the "thesaurus" and examine the pros and cons of the proposed refining method through a case analysis using the "user-defined stop word thesaurus" technique proposed to complement the problems of the existing "stop word dictionary" method with R's word cloud technique. We present comparative verification and suggest the effectiveness of practical application of the proposed methodology.