• Title/Summary/Keyword: smart control and analysis

Search Result 713, Processing Time 0.028 seconds

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1408-1415
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

Dynamic Modeling and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.840-847
    • /
    • 2006
  • Dynamic modelingand active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuators are conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.217-222
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

  • PDF

Plan for Risk Reduction of Smart Factory Process through Accident Analysis and Status Survey (재해분석과 실태조사를 통한 스마트 팩토리 공정의 위험성 감소 방안)

  • Byeon, Junghwan
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.22-32
    • /
    • 2022
  • The domestic smart factory is being built and spread rapidly, mainly by mid-sized companies and large enterprises according to the government's active introduction and support policy. But these factories only promote production system and efficiency, so harmfulness and risk factors are not considered. Therefore, to derive harmful risk factors in terms of industrial safety for 12,983 government-supported smart factory workplaces from 2014 to 2019, industrial accident status analysis compared workplaces with automation facilities and government-supported workplaces with automation facilities. Also, to reduce risks associated with domestic smart factory processes, twenty government-supported workplaces with automation facilities underwent analysis, evaluating risks through a status survey using the process evaluation table. In addition, the status survey considered region, size, industry, construction level, and accident rate; the difference in risk according to the structure of the process was confirmed. Based on the smart factory process evaluation results, statistical analysis confirmed that serial, parallel, and hybrid structures pose different risk levels and that the risks of mixed structures are greater. Finally, safety control system application was presented for risk assessment and reduction in the smart factory process, reflecting the results of disaster analysis and actual condition investigation.

Smart Microvibration Control of High-Tech Industry Facilities using Multi-Objective Genetic Algorithm (다목적 유전자알고리즘을 이용한 첨단기술산업 시설물의 스마트 미진동제어)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.37-45
    • /
    • 2013
  • Reduction of microvibration is regarded as important in high-technology facilities with high precision equipments. In this paper, smart control technology is used to improve the microvibration control performance. Mr damper is used to make a smart base isolation system amd fuzzy logic control algorithm is employed to appropriately control the MR damper. In order to develop optimal fuzzy control algorithm, a multi-objective genetic algorithm is used in this study. As an excitation, a train-induced ground acceleration is used for time history analysis and three-story example building structure is employed. Microvibration control performance of passive and smart base isolation systems have been investigated in this study. Numerical simulation results show that the multi-objective genetic algorithm can provide optimal fuzzy logic controllers for smart base isolation system and the smart control system can effectively reduce microvibration of a high-technology facility subjected to train-induced excitation.

On the buckling of smart beams in racket frames for enhancing the player's control using numerical solution and sinusoidal shear deformation theory

  • Liyan Li;Maryam Shokravi;S.S. Wang
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.657-662
    • /
    • 2024
  • In the present analysis, the buckling behavior of smart beams integrated into racket frames for enhancing player control was examined by numerical solutions and sinusoidal shear deformation theory. The smart beam under consideration is subjected to an external voltage in the thickness direction. The integration of this smart material into the structure of the racket should optimize performance, improving the racket's stability and responsiveness during play. In this, an accurate representation of complex shear effects is made by using a sinusoidal shear deformation theory, while the solution of the resulting governing equations is made by numerical methods. The critical buckling loads and the characteristics of deformation obtained through the analysis provide insight into some design parameters controlling and influencing stability. Obtained results are validated with other published works. The length and thickness of the beam, elastic medium, boundary condition, and influence of external voltages have been represented for buckling load in the structure. These results will help in designing smart racket frames using smart beams to provide more precision and control for the players in an intelligent way.

New Backstepping-DSOGI hybrid control applied to a Smart-Grid Photovoltaic System

  • Nebili, Salim;Benabdallah, Ibrahim;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • In order to overcome the power fluctuation issues in photovoltaic (PV) smart grid-connected systems and the inverter nonlinearity model problem, an adaptive backstepping command-filter and a double second order generalized Integrators (DSOGI) controller are designed in order to tune the AC current and the DC-link voltage from the DC side. Firstly, we propose to present the filter mathematical model throughout the PV system, at that juncture the backstepping control law is applied in order to control it, Moreover the command filter is bounded to the controller aiming to exclude the backstepping controller differential increase. Additionally, The adaptive law uses Lyapunov stability criterion. Its task is to estimate the uncertain parameters in the smart grid-connected inverter. A DSOGI is added to stabilize the grid currents and eliminate undesirable harmonics meanwhile feeding maximum power generated from PV to the point of common coupling (PCC). Then, guaranteeing a dynamic effective response even under very unbalanced loads and/or intermittent climate changes. Finally, the simulation results will be established using MATLAB/SIMULINK proving that the presented approach can control surely the smart grid-connected system.

Private Blockchain-Based Secure Access Control for Smart Home Systems

  • Xue, Jingting;Xu, Chunxiang;Zhang, Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6057-6078
    • /
    • 2018
  • Smart home systems provide a safe, comfortable, and convenient living environment for users, whereby users enjoy featured home services supported by the data collected and generated by smart devices in smart home systems. However, existing smart devices lack sufficient protection in terms of data security and privacy, and challenging security and privacy issues inevitably emerge when using these data. This article aims to address these challenging issues by proposing a private blockchain-based access control (PBAC) scheme. PBAC involves employing a private blockchain to provide an unforgeable and auditable foundation for smart home systems, that can thwart illegal data access, and ensure the accuracy, integrity, and timeliness of access records. A detailed security analysis shows that PBAC could preserve data security against various attacks. In addition, we conduct a comprehensive performance evaluation to demonstrate that PBAC is feasible and efficient.

Effects of Self-Control, Parent-Adolescent Communication, and School Life Satisfaction on Smart-phone Addiction for Middle School Students (중학생의 자기통제, 부모-자녀 간의 의사소통 및 학교생활만족도가 스마트폰 중독에 미치는 영향)

  • Lee, Su Jin;Moon, Hyuk Jun
    • Korean Journal of Human Ecology
    • /
    • v.22 no.6
    • /
    • pp.587-598
    • /
    • 2013
  • This study is to examine (the) effects of self-control, parent-adolescent communication, and school life satisfaction on smart-phone addiction for middle school students. The 127 students who were classified as smart-phone addicts among first to third grade at two middle schools located in Gyunggido were sampled with a survey. T-tests, ANOVA, Pearson's correlation, and multiple regression analysis were used. The results of study were as follows. First, smart-phone addiction make no difference according to adolescent's sex and grade. Second, the relations between smart-phone addiction and the factors included self-control, parent-adolescent communication, and school life satisfaction were negatively correlated. As a result, the higher self-control, parent-adolescent communication, and school life satisfaction were, the lower smart -phone addiction was. Third, it is significant as variable that adverse effect, low rank class of parent-adolescent communication and personal relationship, same class as the former of school life satisfaction exert influence on smart phone addiction.

Aircraft and spacecraft structural analysis with hybrid criterion of smart control

  • C.C., Hung;T., Nguyen
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.553-569
    • /
    • 2022
  • In this article, we propose a criterion for ensuring the asymptotic stability of large multiple delays, based on the direct Lyapunov method. Based on this criterion and distributed control scheme, the controllers are synthesized by the PDC to stabilize these large-scale systems with multiple delays. And we focus on the results which shows the high effective by the proposed theory utilized for damage propagation for aircraft structural analysis of composite materials. Finally, the numerical simulations confirmed the effectiveness of the method.