DOI QR코드

DOI QR Code

Aircraft and spacecraft structural analysis with hybrid criterion of smart control

  • C.C., Hung (Department of Mechanical Engineering, National Taiwan University) ;
  • T., Nguyen (Ha Tinh University, Dai Nai Campus)
  • Received : 2022.04.22
  • Accepted : 2022.12.01
  • Published : 2022.11.25

Abstract

In this article, we propose a criterion for ensuring the asymptotic stability of large multiple delays, based on the direct Lyapunov method. Based on this criterion and distributed control scheme, the controllers are synthesized by the PDC to stabilize these large-scale systems with multiple delays. And we focus on the results which shows the high effective by the proposed theory utilized for damage propagation for aircraft structural analysis of composite materials. Finally, the numerical simulations confirmed the effectiveness of the method.

Keywords

References

  1. Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249.
  2. Chen, C., Chen, P. and Chiang, W. (2011), "Stabilization of adaptive neural network controllers for nonlinear structural systems using a singular perturbation approach", J. Vib. Control, 17, 1241-1252. https://doi.org/10.1177/1077546309352827.
  3. Chen, C.Y.J., Kuo, D., Hsieh, C. and Chen, T. (2020), "System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems", Smart Struct. Syst., 26(6), 797-807. https://doi.org/10.12989/sss.2020.26.6.797.
  4. Chen, P.C., Chen, C. and Chiang, W. (2008), "GA-based fuzzy sliding mode controller for nonlinear systems", Math. Prob. Eng., 2008, Article ID 325859. https://doi.org/10.1155/2008/325859.
  5. Chen, P.C., Chen, C. and Chiang, W. (2009), "A novel stability condition and its application to GA-based fuzzy control for nonlinear systems with uncertainty", J. Marine Sci. Technol., 17, 293-299.
  6. Chen, P.C., Chen, C. and Chiang, W. (2009), "GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems", Exp. Syst. Appl., 36, 5872-5879. https://doi.org/10.1016/j.eswa.2008.07.003.
  7. Chen, P.C., Chen, C., Chiang, W. and Lo, D.C. (2011), "GA-based decoupled adaptive FSMC for nonlinear systems by a singular perturbation scheme", Exp. Syst. Appl., 3620(4), 517-526. https://doi.org/10.1007/s00521-011-0540-7.
  8. Chen, T., M., Marto, A. and Chen, C. (2010), "Application of data mining to the spatial heterogeneity of foreclosed mortgages", Exp. Syst. Appl., 37, 993-997. https://doi.org/10.1016/j.eswa.2009.05.076.
  9. Chen, T., Yang, H.P. and Chen, C. (2008), "A mathematical tool for inference in logistic regression with small-sized data sets: A practical application on ISW-ridge relationships", Math. Prob. Eng., 2008, Article ID 186372. https://doi.org/10.1155/2008/186372.
  10. Chiang, W., Chen, C. and Hsiao, F. (2004), "Stability analysis of nonlinear interconnected systems via T-S fuzzy models", Int. J. Comput. Intel. Appl., 4, 41-55. https://doi.org/10.1142/S1469026804001033.
  11. Chiang, W., Chen, C. and Wu, D. (2007), "Modeling, H∞ control and stability analysis for structural systems using Takagi-Sugeno fuzzy model", J. Vib. Control, 13, 1519-1534. https://doi.org/10.1177/1077546307073690.
  12. Chiang, W., Chen, C., Lin, C., Tsai, C., Chen, C. and Yeh, K. (2007), "A novel delay-dependent criterion for time-delay T-S fuzzy systems using fuzzy Lyapunov method", Int. J. Artif. Intell. Tool., 16, 545-552. https://doi.org/10.1142/S0218213007003400.
  13. Chiang, W., Tsai, C., Chen, C. and Wang, M. (2007), "Fuzzy lyapunov method for stability conditions of nonlinear systems", Int. J. Artif. Intell. Tool., 15, 163-172. https://doi.org/10.1142/S0218213006002618.
  14. Chiang, W., Yeh, K., Chen, C. and Chen, C. (2007), "Robustness design of time-delay fuzzy systems using fuzzy Lyapunov method", Appl. Math. Comput., 205, 568-577. https://doi.org/10.1016/j.amc.2008.05.104.
  15. Chiang, W.L., Chen, T.W., Liu, M.Y. and Hsu, C.J. (2001), "Application and robust H control of PDC fuzzy controller for nonlinear systems with external disturbance", J. Marine Sci. Technol., 9(2), 84-90.
  16. Chiang, W.L., Yeh, K., Chen, C. and Chen, C. (2002), "A new approach to stability analysis for nonlinear time-delay systems", Int. J. Fuzzy Syst., 4(2), 735-738.
  17. Eswaran, M. and Reddy, G.R. (2016), "Numerical simulation of tuned liquid tank-structure systems through sigma-transformation based fluid-structure coupled solver", Wind Struct, 23(5), 421-447. https://doi.org/10.12989/was.2016.23.5.421.
  18. Feng, G., Cao, S.G., Rees, N.W. and Chak, C.K. (1997), "Design of fuzzy control systems with guaranteed stability", Fuzzy Set. Syst., 85, 1-10. https://doi.org/10.1016/0165-0114(95)00375-4.
  19. Hsiao, F., Chen, C. and Tsai, K. (2005), "Stability conditions of fuzzy systems and its application to structural and mechanical systems", Adv. Eng. Softw., 37, 624-629. https://doi.org/10.1016/j.advengsoft.2005.12.002.
  20. Hsiao, F., Chen, C., Liang, Y., Xu, S. and Chiang, W. (2005), "T-S fuzzy controllers for nonlinear interconnected systems with multiple time delays", IEEE Trans. Circuit. Syst. I: Regul. Paper., 52(9), 1883-1893. https://doi.org/10.1109/TCSI.2005.852492.
  21. Hsiao, F., Chen, C., Wu, Y. and Chiang, W. (2005), "Fuzzy controllers for nonlinear interconnected tmd systems with external force", J. Chin. Inst. Eng., 28(1), 175-181. https://doi.org/10.1080/02533839.2005.9670984.
  22. Hsiao, F., Chiang, W. and Chen, C. (2004), "Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems", Math. Comput. Simul., 66, 523-537. https://doi.org/10.1016/j.matcom.2004.04.001.
  23. Hsiao, F., Chiang, W., Chen, C., Xu, S. and Wu, S. (2005), "Application and robustness design of fuzzy controller for resonant and chaotic systems with external disturbance", Int. J. Uncertain. Fuzz. Knowl. Bas. Syst., 13(3), 281-295. https://doi.org/10.1142/S0218488505003461.
  24. Hsiao, F., Chiang, W., Xu, S. and Wu, S. (2003), "Application and fuzzy H∞ control via T-S fuzzy models for nonlinear time-delay systems", Int. J. Artif. Intell. Tool., 12(2), 117-137. https://doi.org/10.1142/S0218213003001174.
  25. Hsiao, F., Chiang, W., Xu, S. and Wu, S. (2005), "Fuzzy control for nonlinear systems via neural-networkbased approach", Int. J. Comput. Meth. Eng. Sci. Mech., 6, 145-152. https://doi.org/10.1080/15502280590923612.
  26. Hsiao, F., Hwang, J., Chen, C. and Tsai, Z. (2005), "Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control", IEEE Trans. Fuzzy Syst., 13, 152-163. https://doi.org/10.1109/TFUZZ.2004.836067.
  27. Hsieh, T., Wang, M., Chen, C., Chen, C., Yu, S., Yang, H.P. and Chen, T. (2006), "A new viewpoint of scurve regression model and its application to construction management", Int. J. Artif. Intel. Tool., 15, 131-142. https://doi.org/10.1142/S021821300600259X.
  28. Hung, C.C., Tim, C. and Abu, A.A. (2019), "Optimal fuzzy design of Chua's circuit system", Int. J. Innov. Comput., Inform. Control, 15(6), 2355-2366. https://doi.org/10.24507/ijicic.15.06.2355.
  29. Lin, C., Wang, J.F., Chen, C., Chen, C. and Yen, C.V. (2009), "Improving the generalization performance of RBF neural networks using a linear regression technique", Exp. Syst. Appl., 36, 12049-12053. https://doi.org/10.1016/j.eswa.2009.03.012.
  30. Lin, J., Chen, C., Lee, W. (2010), "Modeling and fuzzy pdc control and its application to an oscillatory TLP structure", Math. Prob. Eng., 2010, Article ID 120403. https://doi.org/10.1155/2010/120403.
  31. Lin, J., Chen, C., Lee, W. and Chen, C. (2010), "Fuzzy control for an oceanic structure: A case study in time-delay TLP system", J. Vib. Control, 16, 147-160. https://doi.org/10.1177/1077546309339424.
  32. Lin, J., Chen, C., Shen, C. and Cheng, M. (2010), "Application of fuzzy-model-based control to nonlinear structural systems with time delay: An LMI method", J. Vib. Control, 16, 1651-1672. https://doi.org/10.1177/1077546309104185.
  33. Lin, J., Shen, C., Chen, C. and Cheng, M. (2010), "Stability analysis of an oceanic structure using the Lyapunov method", Eng. Comput., 27, 186-204. https://doi.org/10.1108/02644401011022364.
  34. Lin, M., Chen, C., Wang, Q., Cao, Y., Shih, J., Lee, Y., Chen, C. and Wang, S. (2009), "Fuzzy model-based assessment and monitoring of desertification using MODIS satellite imagery", Eng. Comput., 26, 745-760. https://doi.org/10.1108/02644400910985152.
  35. Lin, M.L. and Chen, C.W. (2010), "Application of fuzzy models for the monitoring of ecologically sensitive ecosystems in a dynamic semiarid landscape from satellite imagery", Eng. Comput., 27, 5-19. https://doi.org/10.1108/02644401011008504.
  36. Liu, K.F., Chen, C. and Cheng, M. (2009), "Modeling and control for nonlinear structural systems via a NNbased approach", Exp. Syst. Appl., 36, 4765-4772. https://doi.org/10.1016/j.eswa.2008.06.062.
  37. Liu, K.F., Chen, C., Shen, C., Chen, C. and Cheng, M. (2009), "A stability criterion for time-delay tension leg platform systems subjected to external force", Chin. Ocean Eng., 23, 49-57.
  38. Liu, K.F., Yeh, K. and Chen, C. (2009), "Adaptive fuzzy sliding mode control for seismically excited bridges with lead rubber bearing isolation", Int. J. Uncertain. Fuzz. Knowl. Bas. Syst., 17, 705-727. https://doi.org/10.1142/S0218488509006224.
  39. Liu, K.F., Yeh, K. and Chen, C. (2009), "The stability of an oceanic structure with T-S fuzzy models", Math. Comput. Simul., 80, 402-426. https://doi.org/10.1016/j.matcom.2009.08.001.
  40. Meng, Y.Z., Fu, Q. and Chen, T. (2022), "Grey FNN control and robustness design for practical nonlinear systems", J. Eng. Res., https://doi.org/10.36909/jer.11273.
  41. Meng, Y.Z., Fu, Q. and Chen, T. (2022), "Stochastic intelligent GA-NN controller design for active TMD shear building", Struct. Eng. Mech., 81(1), 51-57. https://doi.org/10.12989/sem.2022.81.1.051.
  42. Meng, Y.Z., Fu, Q. and Chen, T. (2022), "Systematic fuzzy Navier-Stokes equations for aerospace vehicles", Aircraft Eng. Aerosp. Technol., 94(3), 351-359. https://doi.org/10.1108/AEAT-06-2020-0109.
  43. Meng, Y.Z., M., Marto, A. and Chen, T. (2022), "NN model-based evolved control by DGM model for practical nonlinear systems", Exp. Syst. Appl., 193, 115873. https://doi.org/10.1016/j.eswa.2021.115873.
  44. Meng, Y.Z., Wang, R., Fu, Q. and Chen, T. (2022), "Composite components damage tracking and dynamic structural behaviour with AI algorithm", Steel Compos. Struct., 42(2) 151-159. https://doi.org/10.12989/scs.2022.42.2.151.
  45. Mori, T. (1985), "Criteria for asymptotic stability of linear time delay systems", IEEE Trans. Automat. Contr., 30, 158-162. https://doi.org/10.1109/TAC.1985.1103901.
  46. Razavi, A. and Sarkar, P.P. (2018), "Laboratory investigation of the effects of translation on the near-ground tornado flow field", Wind Struct., 26(3), 179-190. https://doi.org/10.12989/was.2018.26.3.179.
  47. Tanaka, K. and Sugeno, M. (1992), "Stability analysis and design of fuzzy control system", Fuzzy Set. Syst., 45, 135-156. https://doi.org/10.1016/0165-0114(92)90113-I.
  48. Tanaka, K., Ikeda, T. and Wang, H.O. (1996), "Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, H∞ control theory, and linear matrix inequalities", IEEE Trans. Fuzzy Syst., 4, 1-13. https://doi.org/10.1109/91.481840.
  49. Tim, C. and Chen, C. (2020), "Intelligent fuzzy algorithm for nonlinear discrete-time systems", Trans. Inst. Measure. Control, 42(7), 1358-1374. https://doi.org/10.1177/0142331219891383.
  50. Tim, C. and Chen, C. (2021), "Evolved auxiliary controller with applications to aerospace", Aircraft Eng. Aerosp. Technol., 93(4), 529-543. https://doi.org/10.1108/AEAT-12-2019-0233
  51. Tim, C. and Chen, C.Y.J. (2019), "Meteorological tidal predictions in the mekong estuary using an evolved ANN time series", Marine Technol. Soc. J., 53(6), 27-34. https://doi.org/10.4031/MTSJ.53.6.3.
  52. Tim, C. and Chen, J.C. (2019), "Decentralized fuzzy C-Means robust algorithm for continuous systems", Aircraft Eng. Aerosp. Technol., 92(2), 222-228. https://doi.org/10.1108/AEAT-04-2019-0082.
  53. Tim, C. and Cheng, C. (2019), "Modelling and verification of an automatic controller for a water treatment mixing tank", Desalin. Water Treat., 159, 318-326. https://doi.org/10.5004/dwt.2019.24143.
  54. Tim, C., Dkuo, N.J. and Chen, C. (2020), "A composite control for UAV systems with time delays", Aircraft Eng. Aerosp. Technol., 92(7), 949-954. https://doi.org/10.1108/AEAT-11-2019-0219.
  55. Tim, C., Huang, Y., Hung, C.C., Frias, S., Muhammad, J.A. and Chen, C. (2021), "Smart structural stability and NN based intelligent control for nonlinear systems", Smart Struct. Syst., 27(6), 917-926. https://doi.org/10.12989/sss.2021.27.6.917.
  56. Tim, C., Hung, C.C., Huang, Y.C., Chen, J.C., Rahman, S. and Islam Mozumder, T. (2021), "Grey signal predictor and fuzzy controls for active vehicle suspension systems via Lyapunov theory", Int. J. Comput. Commun. Control, 16(3), 3991, 2021. https://doi.org/10.15837/ijccc.2021.3.3991.
  57. Tim, C., Kapron, N. and Chen, J.C. (2020), "Using evolving ANN-Based algorithm models for accurate meteorological forecasting applications in Vietnam", Math. Prob. Eng., 2020, Article ID 8179652. https://doi.org/10.1155/2020/8179652.
  58. Tim, C., Kuo, D., Huiwi, M., Gong-yo, T. and Chen, J. (2021), "Evolved predictive vibration control for offshore platforms based on the Lyapunov stability criterion", Ship. Offshore Struct., 16(7), 700-713. https://doi.org/10.1080/17445302.2020.1776548.
  59. Tim, C., Lohnash, M., Owens, E. and Chen, C. (2020), "PDC Intelligent control-based theory for structure system dynamics", Smart Struct. Syst., 25(4), 401-408. https://doi.org/10.12989/sss.2020.25.4.401.
  60. Tim, C., Morozov, S.N. and Chen, C.Y.J. (2019), "Hazard data analysis for underwater vehicles by submarine casualties", Marine Technol. Soc. J., 53(6), 21-26. https://doi.org/10.4031/MTSJ.53.6.2.
  61. Trinh H. and Aldeen, (1995), "A comment on 'Decentralized stabilization of the large scale interconnected systems with delays", IEEE Trans. Automat. Contr., 40, 914-916. https://doi.org/10.1109/9.384229
  62. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385.
  63. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J. and Istanda, V. (2012), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134.
  64. Tsai, P.W., Tseng, C.P., Hsu, W. and Chiang, W. (2012), "A novel strategy to determine insurance and risk control plan for natural disaster risk management", Nat. Hazard., 64, 1391-1403. https://doi.org/10.1007/s11069-012-0305-3.
  65. Wang H.O., Tanaka, K. and Griffin, M.F. (1996), "An approach to fuzzy control of nonlinear systems: stability and design issues", IEEE Trans. Fuzzy Syst., 4, 14-23. https://doi.org/10.1109/91.481841
  66. Wang, R., Zhen, C., Meng, Y.Z., Fu, Q. and Chen, T. (2021), "Active TMD systematic design of fuzzy control and the application in high-rise buildings", Earthq. Struct., 21(6), 577-585. https://doi.org/10.12989/eas.2021.21.6.577.
  67. Wang, R., Zhen, C., Meng, Y.Z., Fu, Q. and Chen, T. (2021), "Apply a robust fuzzy LMI control scheme with AI algorithm to civil frame building dynamic analysis", Comput. Concrete, 28(4), 433-440. https://doi.org/10.12989/cac.2021.28.4.433.
  68. Wang, R., Zhen, C., Meng, Y.Z., Fu, Q. and Chen, T. (2021), "Grey signal predictor and evolved control for practical nonlinear mechanical systems", J. Grey Syst., 33(1), 156-170.
  69. Wang, R., Zhen, C., Meng, Y.Z., Fu, Q. and Chen, T. (2021), "Smart structural control and analysis for earthquake", Struct. Eng. Mech., 79(2), 131-139. https://doi.org/10.12989/sem.2021.79.2.131.
  70. Wu, C. (2006), "Fuzzy lyapunov method for stability conditions of nonlinear systems", Int. J. Artif. Intell. Tool., 15, 163-171. https://doi.org/10.1142/S0218213006002618.
  71. Wu, C. (2007), "A novel delay-dependent criterion for time-delay T-S fuzzy systems using fuzzy Lyapunov method", Int. J. Artif. Intell. Tool., 16, 545-552. https://doi.org/10.1142/S0218213007003400.
  72. Wu, C. (2007), "Modeling, control and stability analysis for structural systems using Takagi-Sugeno Fuzzy model", J. Vib. Control, 13, 1519-1534. https://doi.org/10.1177/1077546307073690.
  73. Wu, C. (2010), "Modeling and fuzzy PDC control and its application to an oscillatory TLP structure", Math. Prob. Eng., 2010, Article ID 120403. https://doi.org/10.1155/2010/120403.
  74. Wu, C., Weiling, C., Ken, Y., Zhenyuan, C. and Liteh, L. (2002), "A stability criterion of time-delay fuzzy systems", J. Marine Sci. Technol., 10, 33-35.
  75. Yan, X.G. and Dai, G.Z. (1998), "Decentralized output feedback robust control for nonlinear large-scale systems", Automatica, 34(11), 1469-1472. https://doi.org/10.1016/S0005-1098(98)00090-9.
  76. Yang, G.H. and Zhang, S.Y. (1996), "Decentralized control of a class of large-scale systems with symmetrically interconnected subsystems", IEEE Trans. Automat. Contr., 41, 710-713. https://doi.org/10.1109/9.489207
  77. Yuan, C.C. (2007), "An experimental study of stratified mixing caused by internal solitary waves in a twolayered fluid system over variable seabed topography", Ocean Eng., 34, 1995-2008. https://doi.org/10.1016/j.oceaneng.2007.02.014.
  78. Yuan, C.C. and Hsu, J.R. (2006), "Numerical model of an internal solitary wave evolution on impermeable variable seabed in a stratified two-layer fluid system", China Ocean Eng., 20, 303-313. https://doi.org/10.3321/j.issn:0890-5487.2006.02.010
  79. Yuan, C.C. and Hsu, J.R. (2009), "A stability criterion for time-delay tension leg platform systems subjected to external force", China Ocean Engineering 23, 49-57.
  80. Yuan, C.C., Cheng, M.H. and Hsu, J.R. (2011), "Laboratory experiments on waveform inversion of an internal solitary wave over a slope-shelf", Environ. Fluid Mech., 11, 353-384. https://doi.org/10.1007/s10652-010-9204-x.
  81. Yuan, C.C., Hsu, J.R. and Chen, C. (2005), "fuzzy logic derivation of neural network models with time delays in subsystems", Int. J. Artif. Intel. Tool., 14, 967-974. https://doi.org/10.1142/S021821300500248X.
  82. Yuan, C.C., Hsu, J.R., Chen, H., Kuo, C. and Cheng, M. (2007), "Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes", Ocean Eng., 34, 157-170. http://doi.org/10.1016/j.oceaneng.2005.11.019.
  83. Yuan, C.C., Hsu, J.R., Cheng, M., Chen, H. and Kuo, C. (2007), "An investigation on internal solitary waves in a two-layer fluid: Propagation and reflection from steep slopes", Ocean Eng., 34, 171-184. http://doi.org/10.1016/j.oceaneng.2005.11.020.
  84. Yuan, C.C., Yang, Y., Chen, C., Chen, L. and Chen, T. (2010), "Linking the balanced scorecard (BSC) to business management performance: A preliminary concept of fit theory for navigation science and management", Int. J. Phys. Sci., 5, 1296-1305.
  85. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. http://doi.org/10.12989/scs.2018.28.4.439.
  86. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201.
  87. Zhen, C. (2014), "Stability analysis and robustness design of nonlinear systems: An NN-based approach", Appl. Soft Comput., 11, 2735-2742. https://doi.org/10.1016/j.asoc.2010.11.004.
  88. Zhen, C. (2014). "Modeling, control, and stability analysis for time-delay TLP systems using the fuzzy Lyapunov method", Neur. Comput. Appl., 20, 527-534. https://doi.org/10.1007/s00521-011-0576-8.
  89. Zhen, C.W. (2014), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlin. Dyn., 76(1), 23-31. https://doi.org/10.1007/s11071-013- 0869-9.
  90. Zhen, C.W. (2014), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlin. Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8.
  91. Zhen, C.Y., Ya, M.H., Rai, W.Y. and Timothy, C. (2020a), "Neural ordinary differential gray algorithm to forecasting nonlinear systems", Adv. Eng. Softw., 173, 103199. https://doi.org/10.1016/j.advengsoft.2022.103199.
  92. Zhen, C.Y., Ya, M.H., Rai, W.Y. and Timothy, C. (2020b), "LQG modeling and GA control of structures subjected to earthquakes", Earthq. Struct., 22(4), 421-430 https://doi.org/10.12989/eas.2022.22.4.421.
  93. Zhen, C.Y., Ya, M.H., Rai, W.Y. and Timothy, C. (2020c), "Fuzzy neural network controller of interconnected method for civil structures", Adv. Concrete Constr., 13(5), 385-394 https://doi.org/10.12989/acc.2022.13.5.385.
  94. Zhen, C.Y., Ya, M.H., Rai, W.Y. and Timothy, C. (2020d), "Bridges dynamic analysis under earthquakes using a smart algorithm", Earthq. Struct., 23(4), 329-338 https://doi.org/10.12989/eas.2022.23.4.329.
  95. Zhen, C.Y., Ya, M.H., Rai, W.Y. and Timothy, C. (2020e), "Composite components damage tracking and dynamic structural behaviour with AI algorithm", Steel Compos. Struct., 42(2), 151-159 https://doi.org/10.12989/scs.2022.42.2.151.
  96. Zhen, C.Y., Ya, M.H., Rai, W.Y. and Timothy, C. (2020f), "Dynamic intelligent control of composite buildings by using M-TMD and evolutionary algorithm", Steel Compos. Struct., 42(5), 591-598 https://doi.org/10.12989/scs.2022.42.5.591.
  97. Zhen, C.Y., Ya, M.H., Rai, W.Y. and Timothy, C. (2020g), "NNDI decentralized evolved intelligent stabilization of large-scale systems", Smart Struct. Syst., 30(1), 1-15 https://doi.org/10.12989/sss.2022.30.1.001.
  98. Zhen, C.Y., Ya, M.H., Rai, W.Y. and Timothy, C. (2020h), "Intelligent algorithm and optimum design of fuzzy theory for structural control", Smart Struct. Syst., 30(5), 537-544 https://doi.org/10.12989/sss.2022.30.5.537.
  99. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363.