• Title/Summary/Keyword: small motion

Search Result 1,403, Processing Time 0.026 seconds

High-frame-rate Video Denoising for Ultra-low Illumination

  • Tan, Xin;Liu, Yu;Zhang, Zheng;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4170-4188
    • /
    • 2014
  • In this study, we present a denoising algorithm for high-frame-rate videos in an ultra-low illumination environment on the basis of Kalman filtering model and a new motion segmentation scheme. The Kalman filter removes temporal noise from signals by propagating error covariance statistics. Regarded as the process noise for imaging, motion is important in Kalman filtering. We propose a new motion estimation scheme that is suitable for serious noise. This scheme employs the small motion vector characteristic of high-frame-rate videos. Small changing patches are intentionally neglected because distinguishing details from large-scale noise is difficult and unimportant. Finally, a spatial bilateral filter is used to improve denoising capability in the motion area. Experiments are performed on videos with both synthetic and real noises. Results show that the proposed algorithm outperforms other state-of-the-art methods in both peak signal-to-noise ratio objective evaluation and visual quality.

A Numerical Experiment on the Control of Chaotic Motion (혼돈 운동 제어에 관한 수치 실험)

  • 홍대근;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.154-159
    • /
    • 1997
  • In this paper, we describe the OGY method that convert the motion on a chaotic attractor to attracting time periodic motion by malting only small perturbations of a control parameter. The OGY method is illustrated by application to the control of the chaotic motion in chaotic attractor to happen at the famous Logistic map and Henon map and confirm it by making periodic motion. We apply it the chaotic motion at the behavior of the thin beam under periodic torsional base-excitation, and this chaotic motion is made the periodic motion by numerical experiment in the time evaluation on this chaotic motion. We apply the OGY method with the Jacobian matrix to control the chaotic motion to the periodic motion.

  • PDF

A Motion Capture and Mimic System for Motion Controls (운동 제어를 위한 운동 포착 및 재현 시스템)

  • Yoon, Joongsun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.59-66
    • /
    • 1997
  • A general procedure for a motion capture and mimic system has been delineated. Utilizing sensors operated in the magnetic fields, complicated and optimized movements are easily digitized to analyze and repreduce. The system consists of a motion capture module, a motion visualization module, a motion plan module, a motion mimic module, and a GUI module. Design concepts of the system are modular, open, and user friendly to ensure the overall system performance. Custom-built and/or off-the-shelf modules are ease- ly integrated into the system. With modifications, this procedure can be applied for complicated motion controls. This procedure is implemented on tracking a head and balancing a pole. A neural controller based on this control scheme dtilizing human motions can easily evolve from a small amount of learning data.

  • PDF

Study on Motion Response Characteristics for Large Inclined State of Small Fishing Vessel in Beam Sea Condition (횡파 중 대경사에 따른 소형어선의 동요응답 특성에 관한 연구)

  • Park, Ro-Sik;Kim, Seong-Gun;Lee, Jin-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.17-22
    • /
    • 2011
  • This study conducted wide-tank experiments and numerical calculations for a vessel in various positions such as upright and inclined by 2 and 4 degrees, with the goal of investigating the motion amplitude response of a small damaged fishing boat subject to a beam sea. Numerical calculations were conducted based on the three-dimensional source distribution method. The good agreement of the numerical calculation and experimental results confirmed that the present calculation method can be efficiently used for the initial design of a small fishing boat. In addition, while the chine-line type has been frequently adopted to improve a ship's resistance performance in the design of a small fishing boat, it is considered that the possibility of a deterioration in rolling performance should be thoroughly considered.

A Study on the Characteristic of Motion and Resistance Performance from the Body Plan of Planning Leisure boat at low speed (저속시 활주형 레저보트의 단면형상에 따른 저항·내항성능 특성연구)

  • Park, C.H.;An, N.H.;Jang, H.Y.;Kwon, Y.W.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • In this study, the numerical simulation and basin model test have been performed to evaluate sea worthiness and resistance performance for a small pre-planning three type of leisure boats which are U, V, Y shapes of hull forms. As a well known commercial CFD code, Maxsurf, was applied for modeling hull forms used as the solver of motion analysis. Also the model resistance test was carried out to estimate the effective power of boat in the basin tank. Numerical simulation and model test results show that Y-shaped hull is better than the other types in terms of heave and pitch motion, having a key effect on a boat sea worthiness. But V-type hull is more efficiency than others cases in resistance performance.

Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot (소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석)

  • Sojung Yim;Seongjun Lee;Sang-Min Baek;Seokhaeng Huh;Jaekwan Ryu;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

A Study on Roll Motion in Waves of Capsized Small Vessel Based on Loading Condition (전복사고 발생 소형선박의 적재상태를 고려한 파랑중 횡동요 연구)

  • KIM, Sung-Uk;KIM, In-Seob;SONG, Mi-Kyoung;LEE, Gun-Kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1031-1037
    • /
    • 2021
  • The frequency of marine accidents of vessels in Korea is steadily increasing and it is concentrated on small vessels with less than 10 tons of gross tonnage. Therefore, preventing capsizing accidents in small vessels is important to reduce the cost in terms of human and property damage due to such accidents. However, research on the seakeeping performance of small vessels has been insufficient, and there are no domestic and international regulations on seakeeping performance. Therefore, in this study, capsizing accidents caused by poor loading conditions were investigated by examining the adjudications of the small vessels in which the capsizing accidents occurred. Hydrostatic calculations and seakeeping performance analysis were performed for a representative vessel. A vessel generally performs a six-degree-of-freedom motion during operation. In this study, the response amplitude operator and response spectrum of a representative vessel were calculated to determine the roll motion. Moreover, a short-term statistical analysis of the vessel according to the loading conditions was performed for the wave stationary status for 3 h. From the results, it was estimated that, when the loading condition of a small vessel is poor, its roll motion increases, greatly reducing its stability.

Fast Motion Synthesis of Quadrupedal Animals Using a Minimum Amount of Motion Capture Data

  • Sung, Mankyu
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1029-1037
    • /
    • 2013
  • This paper introduces a novel and fast synthesizing method for 3D motions of quadrupedal animals that uses only a small set of motion capture data. Unlike human motions, animal motions are relatively difficult to capture. Also, it is a challenge to synthesize continuously changing animal motions in real time because animals have various gait types according to their speed. The algorithm proposed herein, however, is able to synthesize continuously varying motions with proper limb configuration by using only one single cyclic animal motion per gait type based on the biologically driven Froude number. During the synthesis process, each gait type is automatically determined by its speed parameter, and the transition motions, which have not been entered as input, are synthesized accordingly by the optimized asynchronous motion blending technique. At the start time, given the user's control input, the motion path and spinal joints for turning are adjusted first and then the motion is stitched at any speed with proper transition motions to synthesize a long stream of motions.

MEAN DISTANCE OF BROWNIAN MOTION ON A RIEMANNIAN MANIFOLD

  • Kim, Yoon-Tae;Park, Hyun-Suk
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.45-48
    • /
    • 2002
  • Consider the mean distance of Brownian motion on Riemannian manifolds. We obtain the first three terms of the asymptotic expansion of the mean distance by means of Stochastic Differential Equation(SDE) for Brownian motion on Riemannian manifold. This method proves to be much simpler for further expansion than the methods developed by Liao and Zheng(1995). Our expansion gives the same characterizations as the mean exit time from a small geodesic ball with regard to Euclidean space and the rank 1 symmetric spaces.

  • PDF

Numerical Evaluation of Control Force in Rectangular Tuned Liquid Damper (사각형 동조 액체 감쇄장치(TLD)에서 조절하중의 수치적 산정)

  • 정일영;황종국
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.250-257
    • /
    • 1995
  • The properties of Tuned Liquid Damper are investigated theoretically. In this study, numerical model is a nonlinear model for a rectangular TLD under horizontal motion on the basis of the shallow water wave theory, where the damping of the liquid motion is included semianalytically. For TLD subjected to harmonic external force, the liquid motion of TLD is simulated. Analysis result is showed that liquid motion in TLD is strongli nonlinear even under small excitation.

  • PDF