• Title/Summary/Keyword: small motion

Search Result 1,406, Processing Time 0.03 seconds

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF

Image Browsing in Mobile Devices Using User Motion Tracking (모바일 장치를 위한 동작 추적형 이미지 브라우징 시스템)

  • Yim, Sung-Hoon;Hwang, Ja-Ne;Choi, Seung-Moon;Kim, Joung-Hyun
    • Journal of the HCI Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • Most recent mobile devices can store a massive amount of images. However, the typical user interface of mobile devices, such as a small-size 2D display and discrete-input buttons, make the browsing and manipulation of images cumbersome and time-consuming. As an alternative, we adopt motion-based interaction along with a 3D layout of images, expecting such an intuitive and natural interaction may facilitate the tasks. We designed and implemented a motion-based interaction scheme for image browsing using an ultra mobile PC, and evaluated and compared its usability to that of the traditional button-based interaction. The effects of data layouts (tiled and fisheye cylindrical layouts) were also investigated to see whether they can enhance the effectiveness of the motion based interaction.

  • PDF

Conceptual Design of Motion Reduction Device for Floating Wave-Offshore Wind Hybrid Power Generation Platform (부유식 파력-해상풍력 복합발전 플랫폼의 운동저감장치 개념설계)

  • Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • The present study deals with the conceptual design of a motion reduction device for a floating wave-offshore wind hybrid power generation platform. A damping plate attached to the bottom of a column of a large semi-submersible is introduced to reduce the motion of the platform. Performance analyses on various shapes and configurations of damping plates were performed using the potential flow solver, and the appropriate configuration and size of the damping plate were selected based on the numerical results. In order to see the effect of viscous damping, a small scale model test was performed in a 2D wave flume. The performances of five different damping plates were measured and discussed based on the results of free decay tests and regular wave tests.

Combination resonances in forced vibration of spar-type floating substructure with nonlinear coupled system in heave and pitch motion

  • Choi, Eung-Young;Jeong, Weui-Bong;Cho, Jin-Rae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.252-261
    • /
    • 2016
  • A spar-type floating substructure that is being widely used for offshore wind power generation is vulnerable to resonance in the heave direction because of its small water plane area. For this reason, the stable dynamic response of this floating structure should be ensured by accurately identifying the resonance characteristics. The purpose of this study is to analyze the characteristics of the combination resonance between the excitation frequency of a regular wave and natural frequencies of the floating substructure. First, the nonlinear equations of motion with two degrees of freedom are derived by assuming that the floating substructure is a rigid body, where the heaving motion and pitching motions are coupled. Moreover, to identify the characteristics of the combination resonance, the nonlinear term in the nonlinear equations is approximated up to the second order using the Taylor series expansion. Furthermore, the validity of the approximate model is confirmed through a comparison with the results of a numerical analysis which is made by applying the commercial software ANSYS AQWA to the full model. The result indicates that the combination resonance occurs at the frequencies of ${\omega}{\pm}{\omega}_5$ and $2{\omega}_{n5}$ between the excitation frequency (${\omega}$) of a regular wave and the natural frequency of the pitching motion (${\omega}_{n5}$) of the floating substructure.

Apsidal motions of 90 eccentric binary systems in the Small Magellanic Cloud

  • Hong, Kyeongsoo;Lee, Jae Woo;Kim, Seung-Lee;Koo, Jae-Rim;Lee, Chung-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2016
  • We examined thousands of light curves of stars brighter than 18.0 mag in I band and less than mean magnitude error of 0.1 mag in V band from the OGLE-III eclipsing binary catalogue, and found 90 new binary systems exhibiting apsidal motion. In this study, the samples of apsidal motion stars in the SMC were increased by 250 percent than previously known. In order to determine the period of the apsidal motion for the binaries, we analysed in detail both light curves and eclipse timings using the MACHO and OGLE photometric database obtained for about 20 yrs. For the eclipse timing diagrams of the systems, new times of minimum light were derived from the full light curve combined at intervals of one yr from the survey data. The binaries presented in this paper have apsidal motion periods in the range of 12-918 yrs. An additional short-term oscillation was detected in five systems (OGLE-SMC-ECL-1634, 1947, 3035, 4946, and 5382), which most likely arise from the existence of a third body orbiting each eclipsing binary. All of the selected systems can be used for the statistical study of the interior structure of the stars in the SMC through their apsidal motions due to the homogeneous data and consistent analysis methods.

  • PDF

A Kinematic Analysis of Taekwondo Juchumseogi hu Apkkoaseogi yeopchagi (태권도 주춤서기 후 앞꼬아서기 옆차기의 운동학적 분석)

  • Heo, Bo-Seob;Lee, Hyo-Taek;Lee, Jeong-Ki;Kim, Yong-Jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.3
    • /
    • pp.535-542
    • /
    • 2014
  • The purpose of this study was to analyze the movements of the lower extremity joints during a taekwondo kick motion called 'Juchumseogi hu Apkkoaseogi yeopchagi', which was administered to players to improve their balance, stability, and range of motion for the prevention of injuries. Eight professional players and amateur players were recruited as the subjects. Kinematic data were collected by four real-time infrared cameras. The hip joint, knee joint, and ankle joint angles were measured using instruments. During the 'Juchumseogi hu Apkkoaseogi yeopchagi' kick motion, there were small and inconsistent effects on each joint. This study processed the data using the Windows SPSS Ver. 18.0 to get an independent t-test, with the setting, p< .05. Results indicated that hip joint, knee joint, and ankle joint angles were almost significantly different between professional and amateur player during 'Juchumseogi hu apgeule Apkkoaseogi' kick motion.

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

Development of the intermittency turbulence model for a plane jet flow (자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발)

  • 조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.528-536
    • /
    • 1987
  • In a turbulent free shear flow, the large scale motion is characterized by the intermittent flow which arises from the interaction between the turbulent fluid and the irrotational fluid of the environment through the mean velocity gradient. This large scale motion causes a bulk convection whose effect is similar to the spatial diffusion process. In this paper, the total diffusion process is proposed to be approximated by weighted sum of the bulk convection due to the large scale motion and the usual gradient diffusion due to small scale motion. The diffusion term in conventional .kappa.-.epsilon. model requires on more equation of the intermittency transport equation. A production term of this equation means mass entrainment from the irrotational fluid to the turbulent one. In order to test the validity of the proposed model, a plane jet is predicted by this method. Numerical results of this model is found to yield better agreement with experiment than the standard .kappa.-.epsilon. model and Byggstoyl & Kollmann's model(1986). Present hybrid diffusion model requires further tests for the check of universality of model and for the model constant fix.

A Heterogeneous Video Transcoder employing Motion Vector Reuse methods for B-pictures (B-프레임 움직임 벡터 재사용을 이용한 혼성비디오 부호변환기)

  • Choi Jeong-Il;Kim Rin-Chul;Nam Je-Ho
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.1 no.2
    • /
    • pp.19-29
    • /
    • 2002
  • This paper deals with heterogeneous video transcoding, which is one of key technologies for the MPEG-21 digital item adaptation. It is noted that motion vector reuse Is necessarily required for computationally efficient implementation of the transcoder. But conventional transcoder employs the motion vector reuse methods only for P-pictures. In this paper, we propose two new motion vector reuse method for B-pictures. By using the proposed methods, we can produce the MPEG bitstream, which is encoded in a I/B/P picture mode. Computer simulation results show that the proposed methods can reduce the computational burden of the transcoder significantly, while allowing only a small amount of performance degradation.

  • PDF