• Title/Summary/Keyword: small heat shock protein

Search Result 58, Processing Time 0.03 seconds

Transcriptome and Small RNAome Analyses Reveal the Association of pre-harvest Sprouting and Heat Stress Response in Rice (Oryza sativa L.)

  • Minsu Park;Woochang Choi;Sang-Yoon Shin;Yujin Kweon;Jihyun Eom;Minsun Oh;Chanseok Shin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.157-157
    • /
    • 2023
  • Pre-harvest sprouting (PHS) in rice (Oryza sativa L.) is one of the main problems associated with seed dormancy. PHS causes yield loss and reduction of grain quality under unpredictable humid conditions at the ripening stage, thus affecting the economic value of the rice crop. To resolve this issue, it is important to understand the molecular mechanism underlying seed dormancy in rice. Recent studies have shown that seed dormancy is affected by a large number of genes associated with plant hormones. However, the effect of heat stress on seed dormancy and plant hormones is not well understood. In this study, we compared the PHS rate as well as the transcriptome and small RNAome of the seed embryo and endosperm of two different accessions of rice, PHS-susceptible rice (low dormancy) and PHS-resistant rice (high dormancy) under three different maturation stages. We identified and verified the candidate genes associated with seed dormancy and heat stress-related responses in rice using quantitative real-time PCR. We newly discovered hormone-related genes, heat shock protein-related genes, and miRNAs potentially involved in PHS. These findings provide a foundation for understanding the dynamics of transcriptome and small RNAome of hormone- and heat stress-related genes, which affect PHS during seed maturation.

  • PDF

The Development of Acupuncture- Moxibustion Device for 4 points around GV20(Baihui) (백회와 사신총 혈위에 적합한 침구 소자의 개발)

  • Jo, Bongkwan
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.19 no.2
    • /
    • pp.101-108
    • /
    • 2015
  • Objectives This paper focused on developing the acupuncture-moxibustion device for head. Disadvantages of the existing devices for head moxibustion are its hume and inconvenience in operating because of the hair. Methods The proposed acupuncture-moxibustion device for GV20(Baihui) is 10mm long as needle body and 6mm long as needle root whose feature are 1~2 turns spiral coil. The spiral coil contains the moxa in order not to drop the moxa while operating Results The direct temperature on the burning moxa were measured by TK-305 infrared thermometer. But the direct temperature on the needle of acupuncture-moxibustion device were not able to measure by TK-305 infrared thermometer. By definition equation, the indirect temperatures on the needle of acupuncture-moxibustion device were able to be calculated. Conclusion A very safe, small and cheap acupuncture-moxibustion device for GV20(Baihui) of head is proposed. It will be useful to generate the heat shock protein and to operate in preventing and curing the Alzheimer's disease.

Hsp27 Reduces Phosphorylated Tau and Prevents Cell Death in the Human Neuroblastoma Cell Line SH-SY5Y

  • Ahn, Junseong;Kim, Hyeseon;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1503-1507
    • /
    • 2013
  • The two major symptoms characterizing Alzheimer's disease are the formation of amyloid-${\beta}$ extracellular deposits in the form of senile plaques and intracellular neurofibrillary tangles (NFTs) that consist of pathological hyperphosphorylated tau protein aggregated into insoluble paired helical filaments (PHFs). Neurons of the central nervous system have appreciable amounts of tau protein, a microtubule-associated protein. To maintain an optimal operation of nerves, the microtubules are stabilized, which is necessary to support cell structure and cellular processes. When the modified tau protein becomes dysfunctional, the cells containing misfolded tau cannot maintain cell structure. One of the pathological hallmarks of Alzheimer's disease is hyperphosphorylated tau protein. This paper shows that the small heat shock protein from humans (Hsp27) reduces hyperphosphorylated tau and prevents hyperphosphorylated tau-induced cell death of the human neuroblastoma cell line SH-SY5Y.

Increased Thermotolerance of Transgenic Rice Plant by Introduction of Thermotolerant Gene

  • Lee, Byung-Hyun;Won, Sung-Hye;Kim, Ki-Yong;Lee, Hyoshin;Jinki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • To increase thennotolerance of forage crops, transgenic rice plants as a model for transformation of monocots were generated. A cDNA encoding the chloroplast-localized small heat shock protein (small HSP) of rice, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from scutella were co-cultivated with a A. tumefaciens strain EHAlOl canying a plasmid, pIGhsp21. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of Oshsp2l gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot and immunoblot analyses revealed that the Oshsp21 gene was constitutively expressed and accumulated as mature protein in transgenic plants. Effects of constitutive expression of the OshspZl on thermotolerance were first probed with the chlorophyll fluorescence. Results indicate that inactivation of electron transport reactions in photosystem I1 (PSII), were mitigated by constitutive expression of the Oshsp21. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress. (Key words : Thermotolerance, Rice, Transgenic, cDNA)

  • PDF

Expression of Heat Shock Protein and Antioxidant Genes in Rice Leaf Under Heat Stress

  • Lee, Dong-Gi;Ahsan, Nagib;Kim, Yong-Goo;Kim, Kyung-Hee;Lee, Sang-Hoon;Lee, Ki-Won;Rahman, Md. Atikur;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.159-166
    • /
    • 2013
  • We have previously investigated the proteome changes of rice leaves under heat stress (Lee et al. in Proteomics 2007a, 7:3369-3383), wherein a group of antioxidant proteins and heat shock proteins (HSPs) were found to be regulated differently. The present study focuses on the biochemical changes and gene expression profiles of heat shock protein and antioxidant genes in rice leaves in response to heat stress ($42^{\circ}C$) during a wide range of exposure times. The results show that hydrogen peroxide and proline contents increased significantly, suggesting an oxidative burst and osmotic imbalance under heat stress. The mRNA levels of chaperone 60, HSP70, HSP100, chloroplastic HSP26, and mitochondrial small HSP responded rapidly and showed maximum expression after 0.5 or 2 h under heat stress. Transcript levels of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and Cu-Zn superoxide dismutase (Cu-Zn SOD) showed a rapid and marked accumulation upon heat stress. While prolonged exposure to heat stress resulted in increased transcript levels of monodehydroascorbate reductase, peroxidase, glyoxalase 1, glutathione reductase, thioredoxin peroxidase, 2-Cysteine peroxiredoxin, and nucleoside diphosphate kinase 1, while the transcription of catalase was suppressed. Consistent with their changes in gene expression, the enzyme activities of APX and DHAR also increased significantly following exposure to heat stress. These results suggest that oxidative stress is usually caused by heat stress, and plants apply complex HSP- and antioxidant-mediated defense mechanisms to cope with heat stress.

Analysis of Expressed Sequence Tags from the Embryogenic Callus of Korean Ginseng (Panax ginseng C.A. Meyer)

  • In, Jun-Gyo;Lee, Bum-Soo;Park, Yong-Eui;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.123-123
    • /
    • 2003
  • In order to study gene expression transcribted during the embryo development, we constructed a cDNA library of embryogenic callus induced from cotylendon of Korean ginseng and generated expressed sequence tags (ESTs) of 3,359 clones randomly selected. The ESTs could be clustered into 1,910 (59.1%) non-redundant groups. Similarity search of the non-redundant ESTs against public non-redundant databases of both protein and DNA indicated that 2,217 groups show similarity to genes of known function. These ESTs clones were divided into eighteen categories depending upon gene function. Most abundant transcripts were ribosomal protein small subunit 28kDa(40), tumor-related protein(35), metallothionein (31), small heat-shock protein class 18.6K(24), and cyclophilin(20). There are no useful informations of gene expression during the embryo development in Korean ginseng. These results could help to understand the embryo development in Korean ginseng.

  • PDF

Physiological and Molecular Responses of Maize to High Temperature Stress During Summer in the Southern Region of Korea

  • Lee, Joon-Woo;Min, Chang-Woo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.170-174
    • /
    • 2018
  • Environmental stresses caused by climate change, such as high temperature, drought and salinity severely impact plant growth and productivity. Among these factors, high temperature stress will become more severe during summer. In this study, we examined physiological and molecular responses of maize plants to high temperature stress during summer. Highest level of $H_2O_2$ was observed in maize leaves collected July 26 compared with June 25 and July 12. Results indicated that high temperature stress triggers production of reactive oxygen species (ROS) in maize leaves. In addition, photosynthetic efficiency (Fv/Fm) sharply decreased in leaves with increasing air temperatures during the day in the field. RT-PCR analysis of maize plants exposed to high temperatures of during the day in field revealed increased accumulation of mitochondrial and chloroplastic small heat shock protein (HSP) transcripts. Results demonstrate that Fv/Fm values and organelle-localized small HSP gene could be used as physiological and molecular indicators of plants impacted by environmental stresses.

Identification of Heat Stress-related Proteins and Low Molecular Weight HSP Expressed in Stem Tissues of Rice Plants by Proteomic Analysis (프로테옴 분석법에 의한 벼 줄기에서 발현하는 고온 스트레스 관련 단백질 및 저분자량 Heat Shock Protein의 분리 동정)

  • Lee, Dong-Gi;Kim, Kyung-Hee;Kim, Yong-Gu;Lee, Ki-Won;Lee, Sang-Hoon;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • In order to investigate rice stem proteome in response to heat stress, rice plants were subjected to heat treatment at 42$^{\circ}C$ and total soluble proteins were extracted from stem tissues, and were fractionated with 15% PEG (poly ethylene glycol) and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). After staining of 2-DE gels, 46 of differentially expressed proteins were extracted, digested by trypsin, and subjected to matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Proteins were identified through database search by using peptide mass fingerprints. Among them, 10 proteins were successfully identified. Seven proteins were up- and 3 proteins were down-regulated, respectively. These proteins are involved in energy and metabolism, redox homeostasis, and mitochondrial small heat shock proteins. The identification of some novel proteins in the heat stress response provides new insights that can lead to a better understanding of the molecular basis of heat-sensitivity in plants, and also useful to molecular breeding of thermotolerant forage crops.

The Antitumor Effect of C-terminus of Hsp70-Interacting Protein via Degradation of c-Met in Small Cell Lung Cancer

  • Cho, Sung Ho;Kim, Jong In;Kim, Hyun Su;Park, Sung Dal;Jang, Kang Won
    • Journal of Chest Surgery
    • /
    • v.50 no.3
    • /
    • pp.153-162
    • /
    • 2017
  • Background: The mesenchymal-epithelial transition factor (MET) receptor can be overexpressed in solid tumors, including small cell lung cancer (SCLC). However, the molecular mechanism regulating MET stability and turnover in SCLC remains undefined. One potential mechanism of MET regulation involves the C-terminus of Hsp70-interacting protein (CHIP), which targets heat shock protein 90-interacting proteins for ubiquitination and proteasomal degradation. In the present study, we investigated the functional effects of CHIP expression on MET regulation and the control of SCLC cell apoptosis and invasion. Methods: To evaluate the expression of CHIP and c-Met, which is a protein that in humans is encoded by the MET gene (the MET proto-oncogene), we examined the expression pattern of c-Met and CHIP in SCLC cell lines by western blotting. To investigate whether CHIP overexpression reduced cell proliferation and invasive activity in SCLC cell lines, we transfected cells with CHIP and performed a cell viability assay and cellular apoptosis assays. Results: We found an inverse relationship between the expression of CHIP and MET in SCLC cell lines (n=5). CHIP destabilized the endogenous MET receptor in SCLC cell lines, indicating an essential role for CHIP in the regulation of MET degradation. In addition, CHIP inhibited MET-dependent pathways, and invasion, cell growth, and apoptosis were reduced by CHIP overexpression in SCLC cell lines. Conclusion: C HIP is capable of regulating SCLC cell apoptosis and invasion by inhibiting MET-mediated cytoskeletal and cell survival pathways in NCI-H69 cells. CHIP suppresses MET-dependent signaling, and regulates MET-mediated SCLC motility.