DOI QR코드

DOI QR Code

Identification of Heat Stress-related Proteins and Low Molecular Weight HSP Expressed in Stem Tissues of Rice Plants by Proteomic Analysis

프로테옴 분석법에 의한 벼 줄기에서 발현하는 고온 스트레스 관련 단백질 및 저분자량 Heat Shock Protein의 분리 동정

  • Lee, Dong-Gi (Dept. of Animal Biosciences, IALS, PMBBRC, Division of Applied Life Sciences (BK21), Gyeongsang National University) ;
  • Kim, Kyung-Hee (Dept. of Animal Biosciences, IALS, PMBBRC, Division of Applied Life Sciences (BK21), Gyeongsang National University) ;
  • Kim, Yong-Gu (Dept. of Animal Biosciences, IALS, PMBBRC, Division of Applied Life Sciences (BK21), Gyeongsang National University) ;
  • Lee, Ki-Won (Dept. of Animal Biosciences, IALS, PMBBRC, Division of Applied Life Sciences (BK21), Gyeongsang National University) ;
  • Lee, Sang-Hoon (National Institute of Animal Science, RDA) ;
  • Lee, Byung-Hyun (Dept. of Animal Biosciences, IALS, PMBBRC, Division of Applied Life Sciences (BK21), Gyeongsang National University)
  • 이동기 (경상대학교 응용생명과학부 동물생명과학과) ;
  • 김경희 (경상대학교 응용생명과학부 동물생명과학과) ;
  • 김용구 (경상대학교 응용생명과학부 동물생명과학과) ;
  • 이기원 (경상대학교 응용생명과학부 동물생명과학과) ;
  • 이상훈 (농촌진흥청 국립축산과학원) ;
  • 이병현 (경상대학교 응용생명과학부 동물생명과학과)
  • Received : 2011.03.07
  • Accepted : 2011.04.28
  • Published : 2011.06.30

Abstract

In order to investigate rice stem proteome in response to heat stress, rice plants were subjected to heat treatment at 42$^{\circ}C$ and total soluble proteins were extracted from stem tissues, and were fractionated with 15% PEG (poly ethylene glycol) and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). After staining of 2-DE gels, 46 of differentially expressed proteins were extracted, digested by trypsin, and subjected to matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Proteins were identified through database search by using peptide mass fingerprints. Among them, 10 proteins were successfully identified. Seven proteins were up- and 3 proteins were down-regulated, respectively. These proteins are involved in energy and metabolism, redox homeostasis, and mitochondrial small heat shock proteins. The identification of some novel proteins in the heat stress response provides new insights that can lead to a better understanding of the molecular basis of heat-sensitivity in plants, and also useful to molecular breeding of thermotolerant forage crops.

프로테오믹스 기법을 이용하여 벼 고온 스트레스 관련 단백질을 분리 동정하기 위하여 $42^{\circ}C$에서 고온처리한 벼의 줄기로부터 단백질을 분리하였다. 분리한 단백질로부터 Rubisco 단백질을 제거하기 위해 15% PEG fractionation을 실시한 후 상등액 분획의 단백질을 이차원전기 영동한 후, CBB 염색을 통해 차별적 발현을 보이는 단백질을 분석하였다. 총 46개의 단백질 spot이 발현양에 변화를 보였으며, 그 중 24개의 단백질이 고온 스트레스에 의해 발현이 증가되었으며, 22개의 단백질이 감소하는 발현 양상을 나타내었다. 이들 단백질을 MALDI-TOF MS와 database를 통해 동정한 결과 에너지 대사관련 단백질, 산화 환원 관련 단백질 및 저분자량 small HSP 등, 10개의 단백질이 동정되었다. 이들 동정된 단백질들은 식물의 고온 스트레스에 대한 적응기작을 이해하는데 중요한 단서를 제공할 것이며, 특히 미토콘드리아 small HSP는 프로테옴 분석법에 의해 최초로 동정되었으며, 금후 내하고성 목초 분자육종에 활용될 수 있는 좋은 유전자로 판단된다.

Keywords

References

  1. Ciereszko, I., H. Johansson, V. Hurry and L.A. Kleczkowki. 2001. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta 212:598-605. https://doi.org/10.1007/s004250000424
  2. Easterling, D.R., B. Horton, P.D. Jones and T.C. Peterson. 1997. Maximum and minimum temperature trends for the globe. Science 277:364-367. https://doi.org/10.1126/science.277.5324.364
  3. Ferreira, S., K. Hjerno, M. Larsen and G. Wingslel. 2006. Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann. Bot. 98:361-377. https://doi.org/10.1093/aob/mcl106
  4. Gelhaye, E., N. Rouhier, N. Navrot and J.P. Jacquot. 2005. The plant thioredoxin system. Cell Mol. Life Sci. 62:24-35. https://doi.org/10.1007/s00018-004-4296-4
  5. Gibson, J.L., J.H. Chen, P.A. Tower and F.R. Tabita. 1990. The form II fructose 1,6-bisphosphatase and phosphoribulokinase genes form part of a large operon in Rhodobacter sphaeroides: Primary structure and insertional mutagenesis analysis. Biochemistry 29:8085-8093. https://doi.org/10.1021/bi00487a014
  6. Gronwald, J.W. and K.L. Plaisance. 1998. Isolation and characterization of glutathione S-transferase isozymes from sorghum. Plant Physiol. 117:877-892. https://doi.org/10.1104/pp.117.3.877
  7. Jacob-Wilk, D., E.E. Goldschmidt, J. Riov and A. Sadka. 1997. Induction of a Citrus gene highly homologous to plant and yeast thi genes involved in thiamine biosynthesis during natural and ethylene-induced fruit maturation. Plant Mol. Biol. 35:661-666. https://doi.org/10.1023/A:1005833724582
  8. Kim, H.J., E.J. Song and K.J. Lee. 2002. Proteomic analysis of protein phosphorylations in heat shock response and thermotolerance. J. Biol. Chem. 277:21193-23207.
  9. Kim, S.T., K.S. Cho, Y.S. Jang and K.Y. Kang. 2001. Two-dimensional electrophoresis analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis. 22: 2103-2109. https://doi.org/10.1002/1522-2683(200106)22:10<2103::AID-ELPS2103>3.0.CO;2-W
  10. Lee, D.G., N. Ahsan, S.H. Lee, K.Y. Kang, J.D. Bahk, I.J. Lee and B.H. Lee. 2007. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369-3383. https://doi.org/10.1002/pmic.200700266
  11. Lin, S.K., M.C. Chang, Y.G. Tsai and H.S. Lur. 2005. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5:2140-2156. https://doi.org/10.1002/pmic.200401105
  12. Lowry, O.H., J.N. Rosebrough, A.l. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
  13. Meng, M., M. Geisler, H. Johansson and E.J. Mellerowicz. 2007. Differential tissue/organdependent expression of two sucrose- and coldresponsive genes for UDP-glucose pyrophosphorylase in Populus. Gene 389:186-195. https://doi.org/10.1016/j.gene.2006.11.006
  14. Nakamura, N. 1993. An illustrative model of instabilities in meridionally and vertically sheared flows. J. Atmos. Sci. 50:357-375. https://doi.org/10.1175/1520-0469(1993)050<0357:AIMOII>2.0.CO;2
  15. Neuhoff, V., N. Arold, D. Taube and W. Ehrhardt. 1988. Improved staining of proteins in plyacrylamide gels include isoelectric focusing gels with clear background at nonogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 9:255-262. https://doi.org/10.1002/elps.1150090603
  16. Pandy, A. and M. Mann. 2000. Proteomics to study genes and genomes. Nature 405:837-846. https://doi.org/10.1038/35015709
  17. Peng, S., J. Huang, J.E. Sheehy and R.M. Visperas. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 101:9971-9975. https://doi.org/10.1073/pnas.0403720101
  18. Rabilloud, T. 2002. Two-dimensional gel electrophoresis on proteomics: Old, old fashioned, but it still climbs up the mountain. Proteomics 2:3-10. https://doi.org/10.1002/1615-9861(200201)2:1<3::AID-PROT3>3.0.CO;2-R
  19. Sanmiya, K., K. Suzuki, Y. Egawa and M. Shono. 2004. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett. 557:265-268. https://doi.org/10.1016/S0014-5793(03)01494-7
  20. Shin, S.Y., H.S. Lee, S.Y. Kwon and S.T. Kwon. 2005. Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta. Plant Physiol. Biochem. 43:55-60. https://doi.org/10.1016/j.plaphy.2004.12.005
  21. Sweetlove, L.J., J.L. Heazlewood, V. Herald and R. Holtzapffel. 2002. The impact of oxidative stress on Arabidopsis itochondria. Plant J. 32:891-904. https://doi.org/10.1046/j.1365-313X.2002.01474.x
  22. Urano, J., T. Nakagawa, Y. Maki and T. Masumura. 2000. Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett. 466:107-111. https://doi.org/10.1016/S0014-5793(99)01768-8
  23. Wahid, A., S. Gelani, M. Ashraf and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environ Exp Bot 61:199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011